Skip to Content
Discovering the causes of cancer and the means of prevention

Publications Search - Abstract View

Title: Adjusted Maximum Likelihood Method in Small Area Estimation Problems.
Authors: Li H,  Lahiri P
Journal: J Multivar Anal
Date: 2010 Apr 1
Branches: BB
PubMed ID: 20161652
PMC ID: PMC2818391
Abstract: For the well-known Fay-Herriot small area model, standard variance component estimation methods frequently produce zero estimates of the strictly positive model variance. As a consequence, an empirical best linear unbiased predictor of a small area mean, commonly used in the small area estimation, could reduce to a simple regression estimator, which typically has an overshrinking problem. We propose an adjusted maximum likelihood estimator of the model variance that maximizes an adjusted likelihood defined as a product of the model variance and a standard likelihood (e.g., profile or residual likelihood) function. The adjustment factor was suggested earlier by Carl Morris in the context of approximating a hierarchical Bayes solution where the hyperparameters, including the model variance, are assumed to follow a prior distribution. Interestingly, the proposed adjustment does not affect the mean squared error property of the model variance estimator or the corresponding empirical best linear unbiased predictors of the small area means in a higher order asymptotic sense. However, as demonstrated in our simulation study, the proposed adjustment has a considerable advantage in the small sample inference, especially in estimating the shrinkage parameters and in constructing the parametric bootstrap prediction intervals of the small area means, which require the use of a strictly positive consistent model variance estimate.