Skip to Content

As a result of the current Federal government funding situation, the information on this website may not be up to date or acted upon.

The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit

Updates regarding government operating status and resumption of normal operations can be found at

Discovering the causes of cancer and the means of prevention

Publications Search - Abstract View

Title: Testing multiple gene interactions by the ordered combinatorial partitioning method in case-control studies.
Authors: Hua X,  Zhang H,  Zhang H,  Yang Y,  Kuk AY
Journal: Bioinformatics
Date: 2010 Aug 1
Branches: BB
PubMed ID: 20538724
PMC ID: not available
Abstract: MOTIVATION: The multifactor-dimensionality reduction (MDR) method has been widely used in multi-locus interaction analysis. It reduces dimensionality by partitioning the multi-locus genotypes into a high-risk group and a low-risk group according to whether the genotype-specific risk ratio exceeds a fixed threshold or not. Alternatively, one can maximize the chi(2) value exhaustively over all possible ways of partitioning the multi-locus genotypes into two groups, and we aim to show that this is computationally feasible. METHODS: We advocate finding the optimal MDR (OMDR) that would have resulted from an exhaustive search over all possible ways of partitioning the multi-locus genotypes into two groups. It is shown that this optimal MDR can be obtained efficiently using an ordered combinatorial partitioning (OCP) method, which differs from the existing MDR method in the use of a data-driven rather than fixed threshold. The generalized extreme value distribution (GEVD) theory is applied to find the optimal order of gene combination and assess statistical significance of interactions. RESULTS: The computational complexity of OCP strategy is linear in the number of multi-locus genotypes in contrast with an exponential order for the naive exhaustive search strategy. Simulation studies show that OMDR can be more powerful than MDR with substantial power gain possible when the partitioning of OMDR is different from that of MDR. The analysis results of a breast cancer dataset show that the use of GEVD accelerates the determination of interaction order and reduces the time cost for P-value calculation by more than 10-fold. AVAILABILITY: C++ program is available at