Skip to Content

As a result of the current Federal government funding situation, the information on this website may not be up to date or acted upon.

The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit

Updates regarding government operating status and resumption of normal operations can be found at

Discovering the causes of cancer and the means of prevention

Publications Search - Abstract View

Title: Genetic variability in iron-related oxidative stress pathways (Nrf2, NQ01, NOS3, and HO-1), iron intake, and risk of postmenopausal breast cancer.
Authors: Hong CC,  Ambrosone CB,  Ahn J,  Choi JY,  McCullough ML,  Stevens VL,  Rodriguez C,  Thun MJ,  Calle EE
Journal: Cancer Epidemiol Biomarkers Prev
Date: 2007 Sep
Branches: MEB
PubMed ID: 17726138
PMC ID: not available
Abstract: Oxidative stress resulting from excess reactive oxygen species and/or deficiencies in antioxidant capabilities may play a role in breast cancer etiology. In a nested case-control study of postmenopausal women (505 cases and 502 controls) from the American Cancer Society Prevention II Nutrition Cohort, we examined relationships between breast cancer risk and genetic polymorphisms of enzymes involved in the generation and removal of iron-mediated reactive oxygen species. Using unconditional logistic regression, genetic variations in Nrf2 (11108C>T), NQO1 (609C>T), NOS3 (894G>T), and HO-1 [(GT)(n) dinucleotide length polymorphism] were not associated with breast cancer risk in a multivariate model. A significant dose trend (P trend = 0.04), however, was observed for total number of putative "at-risk" alleles (Nrf T, NQO1 T, NOS T, and HO-1 LL and LM genotypes), with those carrying three or more at-risk alleles having an odds ratio (OR) of 1.56 [95% confidence interval (95% CI), 0.97-2.51] compared with those having none. When examined in relation to iron, carriage of three or more high-risk alleles in the highest tertile of iron intake (OR, 2.27; 95% CI, 0.97-5.29; P trend = 0.02; P interaction = 0.30) or among users of supplemental iron (OR, 2.39; 95% CI, 1.09-5.26; P trend = 0.02; P interaction = 0.11) resulted in a greater than 2-fold increased risk compared with women with no high-risk alleles. Increased risk was also observed among supplement users with the HO-1 LL or LM genotypes (OR, 1.56; 95% CI, 1.01-2.41; P interaction = 0.32) compared with S allele carriers and MM genotypes combined. These results indicate that women with genotypes resulting in potentially higher levels of iron-generated oxidative stress may be at increased risk of breast cancer and that this association may be most relevant among women with high iron intake.