Skip to Content

As a result of the current Federal government funding situation, the information on this website may not be up to date or acted upon.

The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit

Updates regarding government operating status and resumption of normal operations can be found at

Discovering the causes of cancer and the means of prevention

Publications Search - Abstract View

Title: Familial CLL: genes and environment.
Authors: Goldin LR,  Slager SL
Journal: Hematology Am Soc Hematol Educ Program
Date: 2007
Branches: ITEB
PubMed ID: 18024649
PMC ID: not available
Abstract: Families with multiple individuals affected with chronic lymphocytic leukemia (CLL) and other related B-cell tumors have been described in the literature. Familial CLL does not appear to differ from sporadic CLL in terms of prognostic markers and clinical outcome. While some environmental factors (such as farming-related exposures and occupational chemicals) may increase risk of CLL, results of epidemiologic studies have been generally inconsistent. Rates of CLL in the population show significant international variation, with the highest rates in the U.S. and Europe and the lowest rates in Asia. Migrants from Asia to the U.S. also have low rates of CLL, which supports a greater role for genetic compared with environmental risk factors. Large, population-based case-control and cohort studies have also shown significant familial aggregation of CLL and related conditions including non-Hodgkin and Hodgkin lymphoma. Monoclonal B-cell lymphocytosis also aggregates in families with CLL. However, the clinical implication of familial aggregation is minimal given the overall rarity of CLL. Linkage studies have been conducted in high-risk CLL families to screen the whole genome for loci that contribute to susceptibility, but no gene mutations have yet been identified by this method. Association studies of candidate genes have implicated immune function and other genes, but more studies are needed to verify these findings. The ability to conduct large-scale genomic studies will play an important role in detecting susceptibility genes for CLL over the next few years and thereby help to delineate etiologic pathways.