Skip to Content

As a result of the current Federal government funding situation, the information on this website may not be up to date or acted upon.

The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit https://cc.nih.gov.

Updates regarding government operating status and resumption of normal operations can be found at https://www.opm.gov.

Discovering the causes of cancer and the means of prevention

Publications Search - Abstract View

Title: Gene expression patterns induced by HPV-16 L1 virus-like particles in leukocytes from vaccine recipients.
Authors: García-Piñeres AJ,  Hildesheim A,  Dodd L,  Kemp TJ,  Yang J,  Fullmer B,  Harro C,  Lowy DR,  Lempicki RA,  Pinto LA
Journal: J Immunol
Date: 2009 Feb 1
Branches: IIB
PubMed ID: 19155521
PMC ID: PMC2701477
Abstract: Human papillomavirus (HPV) virus-like particle (VLP) vaccines were recently licensed. Although neutralizing Ab titers are thought to be the main effectors of protection against infection, early predictors of long-term efficacy are not yet defined and a comprehensive understanding of innate and adaptive immune responses to vaccination is still lacking. Here, microarrays were used to compare the gene expression signature in HPV-16 L1 VLP-stimulated PBMCs from 17 vaccine and 4 placebo recipients before vaccination and 1 mo after receiving the second immunization. Vaccination with a monovalent HPV-16 L1 VLP vaccine was associated with modulation of genes involved in the inflammatory/defense response, cytokine, IFN, and cell cycle pathways in VLP-stimulated PBMCs. Additionally, there was up-regulation of probesets associated with cytotoxic (GZMB, TNFSF10) and regulatory (INDO, CTLA4) activities. The strongest correlations with neutralizing Ab titers were found for cyclin D2 (CCND2) and galectin (LGALS2). Twenty-two differentially expressed probesets were selected for confirmation by RT-PCR in an independent sample set. Agreement with microarray data was seen for more than two-thirds of these probesets. Up-regulation of immune/defense response genes by HPV-16 L1 VLP, in particular, IFN-induced genes, was observed in PBMCs collected before vaccination, with many of these genes being further induced following vaccination. In conclusion, we identified important innate and adaptive response-related genes induced by vaccination with HPV-16 L1 VLP. Further studies are needed to identify gene expression signatures of immunogenicity and long-term protection with potential utility in prediction of long-term HPV vaccination outcomes in clinical trials.