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Our previous studies have demonstrated that the power to detect linkage was
improved by calculating a moving average of consecutive p-values in a small
region as compared with testing all single p-values. The goal of this study was to
test whether the power can be improved further with an alternative method
whereby the middle p-values in the sequence were given more weight than the
others. We also wanted to compare the moving average tests with multipoint
linkage tests. The simulated extended pedigree data from the general population
was analyzed to identify two major genes (MGl and MGS) underlying two
quantitative traits (Q1 and Q5). We used the variance components method
implemented in the GENEHUNTER program to test for linkage of 14-marker
regions each on chromosome 19 and chromosome 1 to the adjusted quantitative

" traits Q1 and Q5, respectively, in all 50 replicates. As before, we found that the
moving average test was more powerful than a test based on single p-values. In
some cases, the weighting procedure increased the power further and was similar
to that of multipoint analysis, but this was not consistently found. In addition, all
methods had low power and it is not possible to make a general conclusion that
some weighting schemes are better than others. ©2001 Wiley-Liss, Inc.
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INTRODUCTION

Linkage analysis for complex diseases often has low power due to the small to
moderate effects of the susceptibility genes and to the limited sample size of families
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that are typically available. The threshold appropriate for significant linkage in the
analysis of complex diseases is currently under debate. Lander and Kruglyak [1995] have
: proposed that critical values for significant linkage for a whole genome scan be set to
keep the posterior false positive rate no greater than 5%. Because of the highly stringent
p-value needed for a significant test at a single locus, the power of linkage tests can be
low. Subsequently, Terwilliger et al. [1997] demonstrated that true linkage peaks are
wider than false peaks. We previously demonstrated that calculating a moving average of
two or more consecutive p-values in a small region was more powerful for detecting
Jinkage than that of testing all single p-values [Goldin et al.,, 1999; Goldin and Chase,
1999]. A similar procedure has been suggested by Hoh and Ott [2000].

In this study, we utilized a variance components method to test for linkage between
two quantitative traits (Q1 and Q5) and two major genes (MG1 and MGS) using the
Genetic Analysis Workshop (GAW) 12 simulated data. Given the shape of a linkage
statistic across a chromosome that contains a true trait locus, it is possible that giving
greater weights to the middle markers could improve the power. We have thus attempted
to increase the power of the regional test even more by applying unequal weights to the
consecutive p-values instead of using a simple average. We also wanted to compare the
power of the regional method with that of a complete multipoint analysis.

METHODS

The quantitative trait Q1 was first chosen as the focus for our study. Subsequently,
the quantitative trait Q5 was also selected for the analysis since the major gene effect
accounted for a higher proportion of the trait variance. Our goal was to map the major
gene, MG1, for Q1 and the major gene, MGS5, for Q5. We first performed multiple linear
regression analyses to adjust separately for the effects of covariates on Q1 and Q5. The
untransformed values of Q1 and Q5 were used as the dependent variables, respectively,
and other quantitative traits (Q2, Q3, Q4), age, sex, household, EF1 and EF2 as the
independent variables. The regression coefficients were computed and compared using
the first 10 replicates. Age and sex were the only consistently significant variables to
predict Q1. All variables except household were significant to predict Q5. Mean values
of these coefficients from these 10 replicates were taken. The regression models used for
adjustment of Q1 and QS5 were:

Q1 =10.28 + 1.935*Sex + 0.1*Age;
Q5 = 14.413 + 2.468*Sex + 0.106*Age + 0.011*EF1 + 0.125*EF2
+0.134*Q1 + 0.035*%Q2 + 0.151*Q3 + 0.114*Q4.

The residual values of Q1 and Q5 corrected for these covariates were used as the
quantitative values in the following analyses.

All 50 replicates from the general population were included in the linkage analyses.
Genotype information on deceased individuals was also included in all analyses. Since the
major genes MG1 on chromosome 19 and MGS5 on chromosome 1 were known to be the
primary determinants of genetic variances for the quantitative traits Q1 and QS5, we
considered 14 markers each on chromosome 19 and chromosome 1, respectively, with 3
cM as the average interval between adjacent markers. The trait locus was located at the
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center of the interval with about 20 ¢cM spanning on each side of this 14-marker region,
We used the variance components method implemented in the program GENEHUNTER
(version 2.0) for both two-point and multipoint linkage analyses. This method was chosen
since it has been shown to have greater power than traditional sib-pair analysis [Pratt et
al., 2000]. Because the GENEHUNTER program is best suited for pedigrees of
moderate size, we broke the 23 extended pedigrees into 42 smaller families for the
linkage analyses. Initially, 1,257 individuals from each replicate were included in the
analysis; 420 additional people were dropped by the program. Thus 837 individuals
(including living and deceased) were included in the final analyses. Since our goal was to
compare the power of alternative methods, we did not attempt to maximize the number of
informative individuals in the analysis. Two-point and multipoint lod scores were
computed under the assumption of additive variance. p-Values at each locus from both
two-point and multipoint linkage analyses were calculated after transforming the lod
scores to chi-square statistics (chi-square = 4.6*lod) using the SAS program [SAS, 1999].
Because of the boundary constraint on the quantitative trait locus (QTL) variance, we
assumed that the distribution of the lod score was a 50:50 mixture of a chi-square statistic
with one degree of freedom and a point mass at zero [Self and Liang, 1987].

We have previously shown by simulation that power to detect linkage was improved
by calculating a moving average of two or more consecutive two-point p-values as
compared with testing all single p-values [Goldin et al., 1999]. We have extended this
method to test whether the power can be improved further by applying unequal weights to
the consecutive p-values. We had previously determined the thresholds for significant
(defined as a posterior false positive rate of 5% for a whole genome scan) and suggestive
(defined as no more than one false positive finding per genome scan) linkage by
simulating 1,000 genome scans under the null hypothesis of no linkage of a trait locus to
the map. Using the same simulations, we re-computed these thresholds for different
weighting schemes and then calculated the power to detect linkage (using the Haseman-
Elston test) for the data sets simulated with linkage. Table I shows. the thresholds and
power for the case of a trait with 90% heritability located in the middle of a map of 11
markers spaced 3 ¢cM apart (see Goldin et al. [1999] for details of the simulations). The
power is modestly increased when more weight is placed on the two inner markers.

We applied this method to all 50 replicates of the GAW12 simulated data and
compared the power from these different weighting methods with that of standard two-
point and multipoint analysis for both significant and suggestive linkage thresholds. For
the Q5 analysis, two-point lod scores could not be obtained for one replicate (#32) and it
was dropped from the power analyses. For two-point analysis, we applied these different
weighting rules to every group of four consecutive markers shifting by one marker each
time. For multipoint analysis, the significance of the test was solely based on p-values at
each tested location. For the single p-value test in both two-point and multipoint

TABLE 1. Comparison of Power of Linkage Detection for Different Weighting Schemes (3-cM
Map, 90% Trait Heritability)

Weights for 4 markers Threshold Power
Ml M2 M3 Significant Suggestive  Significant  Suggestive

0.25 0.25 0.25 0.0028 0.01755 51.6 86.3
0.20 0.30 0.30 0.002713 0.017162 522 86.4
0.10 0.40 0.40 0.0023915  0.014486 53.5 87.0
0.05 0.45 0.45 0.0018941  0.011608 54.2 86.6
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TABLE IL._Power to Detect Linkage of Q1 Based on Different Rules
Criterion Power (%) for suggestive linkage  Power (%) for significant linkage
Two-point linkage analysis

Single p-value 22.0 2.0
Average of 4 p-values 26.0 6.0
Unequal weight 1 26.0 6.0
(0.2,03,0.3,0.2)
Unequal weight 2 22.0 6.0
(0.1,04,0.4,0.1)
Unequal weight 3 22.0 8.0
(0.05, 0.45, 0.45, 0.05)

Multipoint linkage analysis 28.0 6.0

analyses, the thresholds were 9.5 x 10°° and 117.5 x 107, respectively for significant and
suggestive linkage based on our previously simulated data for a 3-cM marker map
[Goldin et al., 1999]. Detection of linkage within 20 cM of the trait locus was considered
to be a true positive. Multiple detections within the 14-marker region were counted only
once. Since we applied the variance components linkage test, it is possible that the test
thresholds computed from the Haseman-Elston test were not exactly correct. However, in
this study we were interested in comparing the relative power of the different methods
rather than in the absolute power to detect linkage.

RESULTS

Tables II and III show the associated power for all of the inference rules based on
all 50 replicates for Q1 and 49 replicates for Q5, applying the thresholds that are shown in
Table L.

For Q1, there was a small improvement in power for suggestive linkage detection
using some of the regional inference methods compared with a single, two-point p-value
criterion, but for Q5, the differences among all methods were too small to draw
conclusions. However, there was a consistent slight increase in power for significant
linkage detection by regional inference for both Q1 and Q5. The best improvement was
seen when the markers in the middle of the region were given more weight (0.1, 0.4, 0.4,
0.1 and 0.05, 0.45, 0.45, 0.05). The results for multipoint analysis were close to those
obtained from regional two-point analysis. However, it should be noted that all methods
had relatively low power and it is not possible to definitely conclude that some weighting
schemes are better than others. The results tend to show a narrow range of power values
(especially in the case of Q1). Simulations under a broader range of models are needed to
better define the improvement of power using weighted p-values.

DISCUSSION

In this paper, using the simulated data of GAW12, we have demonstrated that
regional inference with averaged or weighted p-values increased the power to detect
significant linkage in a two-point analysis. Giving substantially more weight to the center
p-values (0.05, 0.45, 0.45, 0.05) resulted in the best improvement of the power for
detecting the significant linkage of both Q1 and Q5. Some of these regional rules (0.1,
0.4,0.4,0.1 and 0.05, 0.45, 0.45, 0.05) were comparable to or even slightly more
powerful than the standard multipoint analysis, although the overall power values were
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TABLE III. Power to Detect Linkage of Q5 Based on Different Rules

Criterion Power (%) for suggestive linkage  Power (%) for significant linkage

Two-point linkage analysis
Single p-value 38.8 10.2
Average of 4 p-values 40.8 12.2
Unequal weight 1 38.8 14.3
(0.2,0.3,0.3,0.2)
Unequal weight 2 38.8 16.3
(0.1,0.4,0.4,0.1)
Unequal weight 3 38.8 16.3
(0.05, 0.45, 0.45, 0.05)

Multipoint linkage analysis 40.8 14.3

low. However, these results were not consistent across the simulations examined so more
studies are needed to determine the overall usefulness of unequal weights. Even though
multipoint linkage analysis is also considered a smoothing technique, p-values are
examined at single points along the genome. In addition, a multipoint analysis requires
more computational time as compared with a two-point analysis when dealing with
extended families and dense markers, and can be affected by errors in marker order and
distances. Thus, our method provides a reasonable alternative to conducting multipoint
analyses, especially in initial linkage scans.

Our conclusions are limited by the fact that the power of finding significant linkage
was low and only two traits were examined. In a real study, genes that accounted for 21%
of the trait variance (as did MG1) or 37% (as did MGS5) would be considered to be
relatively large effects so the low power of the method we used is of some concem.
Clearly the absolute power to detect a trait locus depends on the underlying genetic
model, sample size, and test statistic applied so in a real study, some of these variables
can be altered. For example, in this particular simulation, the method of variance
components analysis as implemented in SOLAR [Almasy and Blangero, 1998] would
have probably been a better method of analysis than the GENEHUNTER approach.
SOLAR can analyze the entire extended pedigree structures and would have allowed the
calculations to be based on a larger sample size resulting in higher power of linkage
detection for these traits. Still, the regional methods proposed here are applicable to any
linkage statistic.

One limitation of our method is the need to determine the threshold for linkage
detection by some empirical method. In this study, we used thresholds computed from
null hypothesis simulations using a slightly different data structure and analytic method,
so it is possible that those thresholds were not exactly correct. However, the relative
ordering of the thresholds should be correct so that the relative powers of the different
methods should be the same. Ideally, one should be able to compute empirical thresholds
for each specific study by simulating many replicate genome scans under the null
hypothesis and computing the same statistics, similar to the approach applied by Gordon
et al. [2001]. However, some computational issues need to be resolved in order to
conduct such simulations efficiently.

It could also be argued that applying multiple weighting methods will increase the
overall type 1 error of the linkage test. One may be able to develop a compromise
weighting from the model-optimal ones that will have relatively high efficiency over the
space of plausible genetic models for a trait.
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