Matabolic Polymorphisms and Susceptibility to Cancer
W. Ryder

1ARC Scientific Publications No. 148

I ional Agency for |

h on Cancer, Lyon, 1999

Nathanie! Rothman, Montserrat Garcia-Closas, Walter 7. Stewart and Jay Lubin

in this Chapter we describe the impact of risk factor misclassification In case-control studies
designed to estimate gene-environment Interactions. We show that under certain scenarios
even smail amounts of exposure or genotype misclassification can substantially attenuate the
interaction effect and, as a consequence, dramatically increase the sample size required fo
study these interactions. A consideration of how sample size is affected by exposure and geno-
type misclasslification in the study design phase shouid help to idenilfy situations where obialn-
ing beter risk factor information is crucial for the feasibility of studies.

The misclassification of risk factor information is
a common problem in epidemiological studies.
Sources of exposure raisclassification have been
extensively described (Armstrong et al., 1992) and
misclassification errors of genetic polymor-
phisms, which can occur in phenotype or geno-
type assays, are discussed in the current volume
by Vineis and Malats (Chapter 6), Benhamou et
al. (Chapter 7), Pelkonen et al. (Chapter 8) and
Blomeke and Shields (Chapter 13). We first con-
sider the effects of misclassification in studies of a
single risk factor (e.g. genotypes or environmen-
tal exposures, broadly defined as exogenous or
endogenous carcinogenic agents), and then
examine the effects of misclassification in studies
of multiplicative interactions between factors. In
each section we review the effects of misclassifi-
cation on the estimated odds ratio (OR) and
required sample size, and then illustrate the
effects with examples.

Misclassification in studies of one risk factor

The impact of the misclassification of risk factors
on estimates of risk and sample size has been
extensively addressed (Bross, 1954; Lilienfeld,
1962; Copeland et al., 1977; Shy et al., 1978;
Gladen & Rogan, 1979; Greenland, 1980; Flegal et
al., 1986; Rothman et al., 1993). In the present
Chapter we focus on the effect of misclassifica-

tion of a dichotomous exposure or genotype (i.e.
exposed versus unexposed or susceptible versus
non-susceptible) on the estimation of the odds
ratio measuring the association between the risk
factor and disease and on the required sample size
to study this association. The true odds ratic is
denoted as OR; and the observed or estimated
odds ratio as OR,. The evaluation of the effects
of misclassifying variables with more than two
categories or which are continuous measures is
beyond the scope of this Chapter.
Misclassification of a dichotomous risk factor
is defined by two probabilities: sensitivity (the
probability of correctly classifying risk factor pos-
itive subjects) and specificity (the probability of
correctly classifying risk factor negative subjects).
When misclassification is non-differential with
regard to disease status, that is, the sensitivity and
specificity do not depend on case or control sia-
tus, the OR, is generally biased towards the null
value of no association (Copeland ef al., 1977;
Flegal et al., 1986). As a consequence, for a given
level of statistical power, a larger sample size is
required to detect the attenuated OR, (Armstrong
et al., 1992). The impact of misclassification
depends on (1) the prevalence of the risk factor
among the controls and (2) the magnitude of the
OR;. Reduced sensitivity tends to have a stronger
impact on the magnitude of bias in the OR,
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when the prevalence of the risk factor is high
rather than low, and reduced specificity tends to
have a stronger impact on the magnitude of the
bias when the prevalence is low (Flegal ef al.,
1986). For a given prevalence of the risk factor
the bias in the OR, increases with the magnitude
of the OR; (Flegal et al., 1986).

As pointed out by Flegal ¢t al. (1986), the
effects of exposure misclassification on measures
of relative risk are complex and not easily gener-
alized, and the potential degree of bias should
therefore be evaluated in each particular situa-
tion. We illustrate below the effects of misclas-
sification in particular examples which may be
of interest in studies of genetic susceptibility to
cancer.

Examples

The examples below illustrate the outlined princi-
ples in the study of an exposure or genetic factor
associated with a fourfold increase in risk of dis-
ease (OR; = 4). The OR,, in the presence of mis-
classification is a function of the OR;, the true

prevalence of the risk factor in the controls, and
the sensitivity and specificity of the risk factor
classification (Kleinbaum et al., 1982; Flegal et
al., 1986). To illustrate the effects of misclassifi-
cation: we calculated the expected OR,, for a range
of values for prevalence, sensitivity and specifici-
ty using  previously published formulae
(Kleinbaum ef al., 1982; Flegal et al., 1986). We
then estimated the number of subjects necessary
to achieve 80% power to detect the expected OR,,,
using a two-sided test at the 5% level as described
by Schiesselman (1974).

Figs. 1a and 1b show how the OR,, and sample
size requirement change as zisk factor sensitivity
ranges from 0.5 to 1.0 and as the prevalence of
the risk factor varies over 0.1, 0.5, and 0.8 (given
OR; = 4, a 1:1 case to control ratio, non-differen-
tial misclassification, petfect specificity and a
desired 80% power). The three lines represent the
three different risk factor prevalences. Under
these conditions, sensitivity has the greatest
impact on the OR;, and sample size requirements
at medium to high prevalences of the risk factor
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Figure 1a. Observed odds ratio as a function of measure-
ment sensitivity for different prevalences of the risk factor
{____ 0.1 prevalence, .... 0.5 prevaiencs, - - - 0.8 preva-
lence). True odds ratio equals 4.0.
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Flgure 1b. Number of cases required to have 80% power to
detect an odds ratio of 4.0 using a two-sided test at the 5%
level, as a function of measurement sensitivity for different
prevalences of the risk factor (____0.1 prevalencs, .... 0.5
prevalence, - - - 0.8 prevalence). Case:control ratio is 1:1.
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Figure 2a. Observed odds ratio as a function of measure-
ment specificity for different prevalences of the risk factor
(____ 0.1 prevaience, .... 0.5 prevalence,

- - - 0.8 prevalence). True odds ratio equals 4.0.

and this impact decreases as the prevalence
becomes lower. For example, when the preva-
lence is 0.5, a sensitivity of 0.9 results in an OR,,
of 3.1 and requires 52 cases and 52 controls, while
a sensitivity of 0.7 results in an OR;, of 2.4 and
requires 88 cases and 88 controls.

Figs. 2a and 2b illustrate the same scenario
except that sensitivity is perfect (1.0) and speci-
ficity varies from 0.5 to 1.0. Under these condi-
tions, specificity has the greatest impact on the
OR,, and sample size requiremnents at low preva-
lences. For example, when the risk factor preva-
lence is 0.1, a specificity of 0.9 results in an OR,
of 2.6 and requires 90 cases and 90 controls,
while a specificity of 0.7 results in an OR, of 1.8
and requires 183 cases and 183 controls,

The knowledge that risk factor prevalence
determines the relative importance of sensitivity
and specificity of exposure assessment or genet-
ic analysis can assist investigators to select tech-
niques that minimize the impact of misclassifi-
cation in their studies. For example, a genotype
assay with essentially perfect specificity but with

Figure 2b. Number of cases reguired to have 80% power to
detect an odds ratio of 4.0 using a two-sided test at 5% ievel,
as a function of measurement specificity for different preva-
lences of the risk factor (____ 0.1 prevalence, .... 0.5 preva-
lence, - - - 0.8 prevalencs). Gase:control ratio is 1:1.

slightly less than perfect sensitivity (e.g. due to
alleles not detected by the assay) would have a
minimal impact on the OR,, for a relatively low
prevalence allele but could have a more substan-
tial impact for a high prevalence allele.

Misclassification in studies of a multiplica-
tive interaction between two risk factors

This section illustrates the effects of misclassifi-
cation in case-control studies which seek to
determine if a disease-exposure association, as
measured by the OR, varies for subjects with and
without a hypothesized at-risk genotype. A mul-
tiplicative interaction implies that the OR for
people exposed to both the at-risk genotype and
the exposure (i.e. the joint OR) is greater than
the product of the OR for the genotype and
exposure alone. The interaction effect is the fac-
tor by which the joint OR is different from the
multiplication of the genetic and exposure
effects individually. We focus on the study of
multiplicative interaction. However, studies of
departures from additive models may also be of
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interest (Pearce, 1989), especially when the goal
is to estimate disease frequency reduction
(Kleinbaum et al., 1982).

In studies where the aim is to investigate the
presence of a multiplicative interaction between
two risk factors and disease, the sample size
required is generally much larger than if the aim
is to detect a single risk factor effect (Smith & Day,
1984; Lubin & Gail, 1990). The required sample
size depends on the true magnitude of association
with disease and the true prevalences of the two
risk factors, as well as on the sensitivity and speci-
ficity for each risk factor (Greenland, 1983).

The effect of misclassification in the assess-
ment of interactions has received only limited
attention (Greenland, 1980; Flegal et al., 1986;
Cox & Elwood, 1991). If the genotype and envi-
ronmental exposure are independent in the pop-
ulation and misclassification of either is non-dif-
ferential with regard to both disease status and
each other, the interaction effect tends to be
biased towards the null value (Greenland, 1980).
Moreover, in general when misclassification of
exposure is differential with regard to disease sta-
tus, which may occur in case-control studies, but
is non-differential with regard to genotype, the
interaction effect is also biased towards the null
(Garcia-Closas et al., 1997).

Examples
Here we ilJustrate the impact of misclassification
on the study sample size and the bias of both the
interaction effect and the joint OR. To simplify
matters the genotype and environmental expo-
sures are defined as dichotomous variables and
are assumed to be independent of each other in
the population. Furthermore, misclassification
of exposure and genotype are assumed to be
independent of each -other and disease status.
The observed ORs in the presence of misclassifi-
cation were calculated using previously pub-
lished formulae which express the expécted cell
counts from a 2 x 2 x 2 table cross-classifying dis-
ease, exposure and genotype as a function of the
true cell counts and the classification probabili-
ties (i.e. sensitivity and specificity) (Kleinbaum et
al., 1982). Sample size calculations were per-
formed as described by Lubin & Gail (1990).

For the examples presented here, genotype
prevalence is fixed at 0.5, whereas exposure
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prevalence takes values of 0.1, 0.5 and 0.8. As
shown in Table 1, the effect of the at-risk geno-
type in the absence of the environmental expo-
sure and the effect of the exposure in the
absence of the at-risk genotype have been arbi-
trarily set at 2.0, the joint effect (or joint OR) of
the genotype and exposure has been set at 12.0,
and the interaction effect has been set to 3.0
(ie. 12.0/(2.0 x 2.0)). The gene-specific expo-
sure ORs are 6.0 (genotype (+) = 12.0/2.0) and
2.0 (genotype (-) = 2.0/1.0). The numbers shown
in Table 1 are true and expected parameters that
do not depend on the number of cases and con-
trols.

Perfect sensitivity and specificity are rarely
attained in the measurement of environmental
exposures. An environmental exposure assess-
ment method that resulted in 0.8 sensitivity
would generally be considered excellent. Table
2 shows the OR,; and OR, for genotype and
exposure when the prevalence of each is 0.5,
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Figure 3a. Observed interaction effact as a function of expo-
sure sensitivity for different exposure prevalences (_____ 0.1
prevalence, .... 0.5 prevalence, - - - 0.8 prevalence). True
interaction effect is 3.0, the true ORs of disease given expo-
sure among non-susceptibles and given genotype among
unexposed are both 2.0, and the genotype prevalence is 0.5.

exposure sensitivity is 0.8 and exposure speci-
ficity is 1.0. As we would expect from the non-
differential nature of the misclassification, the
gene-specific exposure ORs (genotype (+) =
10.3/3.1; genotype (-} = 1.7/1.0) are biased
towards the null value. On the other hand, the
genotype OR among unexposed subjects is
biased away from the null (from 2.0 to 3.1).
This reflects the fact that although the geno-
type is perfectly measured in this example, the
observed genotype OR among the unexposed in
the presence of exposure misclassification is a
weighted average of the genotype OR among
truly unexposed subjects and truly exposed
subjects who were classified as unexposed. The
interaction effect is attenuated from 3.0 to
1.95 (10.3/(1.7 x 3.1)), and the sample size
required to have 80% power increases from 338
cases and 338 conirols with perfect exposure
assessment to 847 cases and 847 controls with
0.8 sensitivity.

Figure 3b. Number of cases required fo have 80% power to
detect a threefold interaction using a two-sided test at 5%
level, as a function of exposure sensitivity for different expo-
sure prevalences (____ 0.1 prevalence, .... 0.5 prevalence,

- - - 0.8 prevalence). The true ORs of disease given that
exposure among non-susceptibles and genotype among
unexposed are both 2.0, and the genotype prevalence is 0.5.
Case:control ratio is 1:1.

Figs. 3a and 3b illustrate the impact on the
interaction effect of varving exposure sensitivi-
ty from 0.5 to 1.0 while holding exposure speci-
ficity at 1.0. Again, the three lines represent
three different exposure prevalences. The
impact of sensitivity on the observed interac-
tion effect is much greater for common expo-
sures than for rare exposures (Fig. 3a). The
attenuation in the observed interaction effect
translates into an increased required sample size
(Fig. 3b). For example, for an exposure preva-
lence of 0.5, lowering exposuze sensitivity from
0.9 to 0.7 more than doubles the required sam-
ple size (from 560 to 1223 cases). At an expo-
sure prevalence of 0.8, the sample size is dra-
matically increased even by small amounts of
exposure inaccuracy, calling into question the
feasibility of the study.

Figs. 4a and 4b illustrate results obtained
when exposure sensitivity is held at 1.0 and
exposure specificity is varied from 0.5 to 1.0.
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Flgure 4a. Observed inferaction effect as a function of expo-
sure specificity for different exposure prevalences (____ 0.1
prevalence, .... 0.5 prevalence, - - - 0.8 prevalence). The true
interaction effect is 3.0, the true ORs of disease given that
exposure among non-susceptibles and genotype among
unexposed are both 2.0, and genotype prevalence is 0.5,

They show that, under our assumptions, the
effect of exposure specificity is greater for rare
than for common exposures, FOr an exposure
prevalence of 0.1, lowering exposure specificity
from 0.9 to 0.7 increases the required sample

Figure 4b. Number of cases required to have 80% power
for detection of a thresfold interaction using a two-sided test
at 5% level, as a function of exposure specificity for different
exposure prevalences (_____ 0.1 prevalence, ... 0.5 preva-
tence, - - - 0.8 prevalence). The true ORs of disease given
that exposure among non-susceptibles and genotype among
unexposed are both 2.0. Case:control ratio is 1:1.

size by about 50% (from 523 to 784 cases),
whereas the effect is smaller for exposure preva-
iences of 0.5 and 0.8.

Figs. 5a and 5b illustrate the effect of exposure
sensitivity and specificity on the observed joint
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Flgure 5a. Observed joint odds ratio as a function of expo-
sure sensitivity for different exposure prevalences (____ 0.1
pravalence, .... 0.5 prevalence, - - - 0.8 prevalence). The true
joint odds ratio is 12.0, the true odds ratios of disease given
that exposure among non-susceptibles and genetype among
unexposed are both 2.0, and the genotype prevalence is 0.5.

OR across exposure prevalences of 0.1, 0.5 and
0.8. The true joint OR has been set equal to 12
(Table 1). There is only a relatively small to mod-
est decline in the observed joint OR as exposure
sensitivity decreases to 0.5 for all three exposure
prevalences. In contrast, imperfect exposure
specificity can substantially reduce the observed
joint OR at an exposure prevalence of 10%.

In exploring the effects of exposure misclassifi-
cation we have assumed that the genotype was
perfectly measured. However, misclassification of
genetic status can occur (Cascorbi et al., 1995;
Blémeke & Shields, Chapter 13) and has an addi-
tional infloence on sample size requirements.
Table 3 illustrates the impact of changing geno-
type sensitivity from 1.0 to 0.95 on sample size,
both in the absence and presence of non-differ-
ential exposure misclassification. In the absence
of exposure misclassification, a genotype sensitiv-
ity of 0.95 increases the sample size by about 30%
(from 338 to 442 cases). When exposure sensitiv-

Figure 5b. Observed joint adds ratio as a function of expo-
sure specificity for different exposure prevalences (____ 0.1
prevalence, .... 0.5 prevalence, - - - 0.8 prevalence). The true
joint odds ratio is 12.0, the true ORs of disease given that
exposure among non-susceptibles and genotype among
unexposed are both 2.0, and the genotype prevalence is 0.5.

ity is 0.8 rather than 1.0, the increase due to the
genotype error is 36% (from 847 to 1156). Thus,
even small genotype errors can substantially
increase the required sample size to detect a gene-
environment interaction, and this increase is
greater when the exposure is also misclassified.

Concluding remarks

These examples show that, in certain scenarios,
even small amounts of exposure misclassifica-
tion can substantially attenuate the interaction
effect, and therefore substantially increase the
already large sample size required to study gene-
environment interactions. Errors in genotype
determination further increase the required sam-
ple size. Considering how sample size is affected
by exposure misclassification in the study design
phase helps to identify situations where obtain-
ing better exposure information is crucial for the
feasibility of the study.

g5



Metabolic Polymorphisms and Susceptibility to Cancer

References

Armstrong, B.K., White, E. & Saracci R. (1992)
Principles  of Exposure  Measurement  in
Epidemiology. Oxford, Oxford University Press,
pp. 49-136

Bross, . {1954) Misclassification in 2 X 2 tables.
Biometrics, 10, 478-486

Cascorbi, 1., Drakoulis, N., Brockmdller, J.,
Maurer, A., Sperling, K. & Roots, I (1995)
Arylamine N-acetyltransferase (NAT2) mutations
and their allelic linkage in unrelated Caucasian
individuals: correlation with phenotypic activity.
Am. J. Hum. Genet., 57, 581-592

Copeland, K.T,, Checkoway, H., McMichael AJ. &
Holbrook, R.H. (1977) Bias due to misclassifica-
tion in the estimation of relative risk. Am. J.
Epidemiol., 105, 488-495

Cox, B. & Flwood, M.]J. (1991) The effect on the
stratum-specific odds ratios of non-differential
misclassification: of a dichotomous covariate, Am.
J. Epidemiol., 15, 202-207

Diamond, E. & Lilienfeld, A.M. (1962) Effects of
errors in classification and diagnosis in various
types of epidemiological studies. Am. J. Public
Health, 52(11), 37-44

Flegal, K.M., Brownie, C. & Haas, J.D. (1986)
The effects of exposure misclassification on esti-
mates of relative risk. Am. J. Epidemiol., 123,
736-751

Garcia-Closas, M., Thompson, D.W. & Robins,
J.M. (1998) Differential misclassification and the
assessment of gene-environment interactions in
case-coritrol studies. Am. J. Epidemiol., 147, 426-
433

Gladen, B. & Rogan, WJ. (1979) Misclassification
and the design of environmental studies. Am. J.
Epidemiol., 109, 607-616

Goldstein, AM., Falk, R.T., Korczak, J.E & Lubin,
J.H. (1997) Detecting gene-environment interac-
tions using a case-control design. Am. . Hum.
Genet., 14, 1085-1089

L]

96

Greenland, S. (1980) The effect of misclassifica-
tion in the presence of covarlates. Am. J.
Epidemiol., 112, 564-569

Greenland, S. (1983) Tests for interaction in epi-
demioiogic studies: a review and a study of power.
Stat. Med., 2, 243-251

Kleinbaum, D.G., Kupper, L.L. & Morgenstern, H.
(1982) Epidemiologic Research: Principles and
Quantitative Methods. New York, Van Nosirand
Reinhold

Lubin, J.H. & Gail, M.H. (199C) On power and
sample size for studying features of the relative
odds of disease. Am. J. Epidemiol., 131, 552-566

Pearce, N. (1989) Analytic implications of epi-
demiological concepts of interaction. Int. J.
Epidemiol., 18, 976-980

Rothman, N., Stewart, W.E, Caporaso, N.E. &
Hayes, R.B. (1993) Misclassification of genetic sus-
ceptibility biomarkers: implications for case-con-
trol studies and cross-population comparisons.
Cancer Epidemiol. Biomarkers Prev., 2, 299-303

Schlesselman J.J. (1974) Sample size requirements
in cohort and case-control studies of disease. Am.
J. Epidemiol., 99, 381-384

Shy, C.M., Kleinbaum, D.G. & Morgenstern, H.
(1978) The effect of misciassification of exposure
in epidemiologic studies of air pollution health
effects. Bull. NY Acad. Med., 54, 1155-1156

Smith, P.G. & Day, N.E. The design of case-control
studies: the infiuence of confounding and inter-
action effects. Int. J. Epidemiol., 13, 356-365






