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Abstract

Risch and Teng [Genome Res 1998;8:1273-1288] and
Teng and Risch [Genome Res 1999;9:234-241] proposed
a class of transmission/disequilibrium test-like statistical
tests based on the difference between the estimated
allele frequencies in the affected and control popula-
tions. They evaluated the power of a variety of family-
based and nonfamily-based designs for detecting an
association between a candidate allele and disease. Be-
cause they were concerned with diseases with low pene-
trances, their power calculations assumed that unaf-
fected individuals can be treated as a random sample
from the population. They predicted that this assumption
rendered their sample size calculations slightly conser-
vative. We generalize their partial ascertainment condi-
tioning by including the status of the unaffected sibs in
the calculations of the distribution and power of the sta-
tistic used to compare the allele frequency in affected off-
spring to the estimated frequency in the parents, based
on sibships with genotyped affected and unaffected sibs.
Sample size formulas for our full ascertainment methods

are presented. The sample sizes for our procedure are
compared to those of Teng and Risch. The numerical
results and simulations indicate that the simplifying as-

sumption used in Teng and Risch can produce both con-.

servative and anticonservative results. The magnitude of
the difference between the sample sizes needed by their
partial ascertainment approximation and the full ascer-
tainment is small in the circumstances they focused on
but can be appreciable in others, especially when the
baseline penetrances are moderate. Two other statistics,
using different estimators for the variance of the basic
statistic comparing the allele frequencies in the affected
and unaffected sibs are introduced. One of them incorpo-
rates an estimate of the null variance obtained from an
auxiliary sample and appears to noticeably decrease the

sample sizes required to achieve a prespecified power.
Copyright © 2002 S. Karger AG, Basel

Introduction

It has been argued that the future of genetic dissection
of complex diseases will require large-scale testing by
association analysis [Lander, 1996; Risch and Merikan-
gas, 1996; Risch, 2000]. The traditional epidemiological
case-control design with unrelated controls is a common
approach for investigating associations between candi-
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date genes and binary disease traits. However, such de-
signs might produce spurious association due to popula-
tion stratification [Li, 1972; Lander and Schork, 1994;
Ewens and Spielman, 1995]. To protect against popula-
tion stratification, many family-based association tests

between a marker and a disease locus have been proposed’
. that incorporate genotype information of parents and off-

spring [Falk and Rubinstein, 1987; Ott, 1989; Terwilliger

“and Ott, 1992; Spielman et al., 1993; Thomson, 1995;

Schaid, 1996; Zhao et al., 1997; Knapp, 1999]. A prime
example of a family-based association test is the transmis-
sion/disequilibrium test (TDT) [Spielman et al., 1993].
The TDT test relies on data on transmission of marker
alleles from parents heterozygous for the marker to af-
fected offspring. Ewens and Spielman [1995] showed that
the TDT is robust to admixture and population stratifica-
tion. Curnow et al. [1998] and Schaid [1998] have

reviewed extensions of the TDT, and the implications of

the completion of the Human Genome Project for family-
based association studies are discussed by Zhao [2000].

Because parental genotypes may not be availabie, how-
ever, alternative family-based designs have been pro-
posed based on a comparison of affected and unaffected
siblings [Clark et al., 1956; Eaves and Meyer, 1994; Risch
and Zhang, 1995; Curtis, 1997; Boehnke and Langefeld,
1998; Horvath and Laird, 1998; Witte et al., 1999; Slager
and Schaid, 2001]. An appealing TDT-like statistic of this
type was proposed by Teng and Risch [1999], namely
(P1 - P2)/ 6, where p, is the estimated frequency of the can-
didate allele in affected siblings, p» is the estimated fre-
quency of that allele in the parents, which is derived from
the genotypes of affected and unaffected siblings, and &°
is an estimator of the variance of (; - f,). Teng and Risch
[1999] calculated required sample sizes for this statistic
under the simplifying assumption that the unaffected sib-
lings could be regarded as a random sample from the pop-
ulation. They conjectured that this assumption would
slightly overestimate required sample sizes. These calcu-
lations are of interest in their own right and also because
they permitted Risch and Teng [1998] and Teng and
Risch [1999] to compare the required sample sizes for a
variety of family-based designs and designs using unre-
lated cases and controls.

To explore the region of accuracy of the assumptions
underlying Teng and Risch [1999], we take into account
the disease status of both the affected and unaffected sibs.
This conditioning is called full ascertainment and the
approximation of Teng and Risch which conditions only
on the affecteds will be referred to as partial ascertain-
ment. A second aspect of the paper is the use of two alter-
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native estimators of the variance of (5, - f). In particular,
one that relies on an estimator of the null variance
obtained from an auxiliary sample of the relevant popula-
tion is shown to have a noticeable gain in power in many
situations. The partial ascertainment approximation is
valid when the penetrances and allele frequency are small.
However, we observe that full ascertainment can have an
appreciable impact on required sample sizes. Depending
on the genetic model (baseline penetrance f, allele fre-
quency p, and mode of inheritance), the required number
of sibships can be noticeably larger or smaller than
reported in the table 3 of Teng and Risch [1999].

~

Methods

We consider a candidate Jocus with two alleles A and a. Following
Teng and Risch [1999], sibships with r affected and s unaffected sibs
without parental genotypes are classified into six exclusive and
exhaustive groups: (I) all sibs are AA; (II) all sibs are aa; (III) all sibs
are Aa; (IV) all sibs are either AA or Aa (but groups I or III are
excluded); (V) all sibs are either Aa or aa (but groups II or III are
excluded; and (VI) either both AA and aa are present in the sibship or
all three genotypes, AA, Aa, and aa, are present in the sibship. Let ¢ =
r + s be the sibship size. We denote the three penetrances by

fr=PAff|44),  fi=PAff|da), fo= P(Aff|aq),

where here and throughout ‘Aff’ denotes affected and ‘Unaff’ unaf-
fected disease status. Following Teng and Risch [1999], we develop

the distribution theory under the assumption that sibling phenotypes ,

are conditionally independent given their respective genotypes. Un-
der this assumption we test the null hypothesis f5 = f; = f;. In the
discussion, we point out that this same null distribution holds for the
weaker null hypothesis that parental mating types are independent of
sibling phenotypes.

Full Ascertainment Conditioning
Following Teng and Risch [1999], we adopt the following nota-
tion to simplify the algebraic formulas:

A o h o h ok
(51} f2+fl,czo fz+f1’cm fl+f0,c‘oo f1+ﬁ)’
2= J2 s = 2fl ;€107 Jo s
T AN+ N L+2fi+ ko L+2fi+
1-£ 1-£
dyy = ,dyo = ,
TR PR B S TR P TR
1-4 1-fo
do = ,doo = ,
RTINS TR S S e TR PR TS
d = l_fZ
P AR 20N+ (1-F)
dn= 20-/) dio= L-/o .
(1-f)+201 -+ -f)’ (1-£)+2(1 =) +(1-f)
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Table 1. Conditional mating type probabilities in families with r
affected and s unaffected sibs
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The c;’s and djs represent the conditional genotype probabilities of
offspring given the parental mating types and offspring affection sta-
tus. Let 2, 1, 0 denote the informative mating types: 2 - 44 x Aa(or
Aa % AA), 1 - Aa X Aa, and 0 - Aa X aa (or aa X Aa). Then, the
subscript 7 in ¢y or dy indicates the mating type and j indicates the
number of 4 alleles the child received from the heterozygous parents.
For example, ¢;; = P{C=A4|C = Aff, G= A4 X Aa)andd|; = P|C=
AA|C = Unaff, G = 4a x Aa). '

The possible parental mating types are represented by G = (i,j),
where i (j) is the number of A alleles carried by the first (second)
parent. Clearly, 0 < ij < 2. For example, G = (1,1) indicates that
both parents are heterozygous with genotype Aa. The population fre-
quency of mating type G = (i,)) is g; = P(G = (i,5)). The conditional
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probability of mating type G = (i,j) given r affected and s unaffected
sibs is m{¥ = PG = (i,/) | C, = Aff, C, = Unaff), where the event that r
sibs are affected is denoted by C, = Aff, and the event that s sibs are
unaffected is denoted by C; = Unaff. Under the null hypothesis, the
conditional probability m{ 9 is just the unconditional probability g;.
The derivations of the condmonal mating type probabilities are giv-

en in Appendix A, and formulas for the conditional mating type

probabilities are shown in table 1, where K,; = P{C, = Aff, C, =
Unaff}]. The formulas in table 1 are analogous to those in table 1 of
Risch and Teng [1998] except that the additional effect of condition-
ing on C; = Unaff is accounted for.

For any given sibship, the genotype status can be regarded as a ‘

random vector (2, jy, jo, k2, k1, ko), where ji, i =0, 1, 2 is the number
of affected sibs with i A alleles; similarly, k; i = 0, 1, 2 is the number
of unaffected sibs with i A alleles. We have j, + ji + jo=r,and ky + k; +
ko = s. The six groups into which the sibships were classified earlier

are mutually exclusive. Hence, the group membership imposes con-

straints on the genotype vector. For example, the fact that a sibship
belongs to group IV implies that j> + ky = 1, j; + k; = 1, and j, =
ko =0.

For group IV sibships, the conditional probability of the genotype

vector given C, = Aff and C; = Unaff is (see Appendix B)
P{j2:jh 05 k2’ kla 0 |Cr= Aff, C_‘- = Unafﬂ

=<]r2) (k ) [mf:rzls;“ﬁ 2od2kf d20 (D cf 4‘1‘1 du] M
where m(”) =m{3¥ + m{; and c;; and djj are defined at the beginning
of the section. All other conditional probabilities along with the
scores assigned to different groups in the proposed test statistic [Teng
and Risch, 1999] defined below in equation (5) are provided in
table 2. The other conditional probabilities in table 2 are derived by
the methods used in Appendix B; details are available from the first
author. Notice that dj/s reduce to 1/2 or 1/4 when £, = f; = fo. Hence,
the conditional probabilities given in table 2 generalize the condi-
tional probabilities given in table 2 of Teng and Risch [1999]. For
example, the conditional probability for a group IV sibship becomes

P[flajl: 0’ kZa kl’ 0 'Cr = Afﬂ

=( ’ )( )2 S[myy o ey +2-keml) oy oy, @)
72/ Nk .
because when f> = f) = fy, day = 1/2, dyo = 172, dy5 = 1/4,dy, = 1/2, and
ki + k; = 5. Their assumption that unaffected individuals are a ran-
dom sample of the population means that conditioning on the child
being unaffected in the definition of dj; is irrelevant, e.g.,

P{C=AA4|C =Unaff, G = Aa x Aa}

= P{C=A4|G = da x Aa}:%.

Thus, dj, = 1/4. Algebraically, this is equivalent to setting the factors
(l - fiy's used in the dj’s and m{}” at the null values (1 - =1~ f; =
1 - f). Notice, however, that the factors, f;, appearing in ¢;and in the
formulas for m(j’ 9 are not set equal to one another. Then, our m(j’ ),
given in table 1, reduce to m(') in their table 1 [Risch and Teng}
1998].
Teng and Risch [1999] proposed a TDT-like statistic (5) for tesﬂ
ing the null hypothesis f, = f; = f;, using the scores given in table 2
These scores were derived from the difference, p;, - fi;, between thd
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Table 2. Scores for Tpg statistic and
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estimated frequency of allele A in the parents (f,) and the observed
frequency of allele A in the affected sibs (5). The maximum likeli-
hbod estimator jy, under the null hypothesis, is

”—l[n+1n +-3-n +-1-n +lny] (3)
P2n 1211141V4V2 Ths

where n;, nyy, nyy, ny and nyy are the number of sibships in group I,
111, IV, V and VI, respectively, and n is the total number of sibships.
If the genotype vector for the ith sibship is (3 ji, Jp K., ki, i), then

4

For example, if the ith sibship is in group IV with genotype vector (ja,
15 Jo, k2, Ky, ko) (for simplicity, the superscript i is eliminated), then,
its contribution to py is -’—*—2—’-'- and its contribution to p is 3/4.
Thus, the score for the ith 51bsh1p is
ja+si
2+ =1 .
Z 3_h-h

S = e e = >
b-p)=——-7=

as in table 2. The form of the test statistic [Teng and Risch. 1999] is

=7 Silb - B) )
yn&
where the S;(p1 - p2), | = 1,..., n are iid. random variables. We
© denote the score for an ascertained sibship by S(p; - p-). The vari-
ance of S(B; — p) is o®. The statistic Tps can be expressed in terms of
" the estimates in formulas (3) and (4) as

n(p - p2)
VR 2 (5
V& 2

Notice that different variance estimators, 82, will create different test
statistics, which are discussed later. When Tps is large. the null

Tps=

Tps=
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hypothesis will be rejected and an association between the candldate
allele A and disease will be declared.

To obtain the sample size required to achieve prespeclﬁed type [
and type 11 errors, we need the expected value and variance of the
statistic (5) under both the null and the alternative hypotheses. The
expectation of the score for an ascertained sibship is

Vo= Eg, (S - Do)
m(z'f)) rogs rogs
= [c21 = €20+ c3pdyy — €363

(rx)
+ —(—1410 [eo1 = coo + Chodin = Cidn]

m(m)
+ {41—'1 [2(c12 - c10) = (c12 + cnrY (2 + dniy

+(cr0+ cn1Y (dio + dun) + cldig - il (6)

The derivation of formula (6) is in Appendix C. By setting = fi = /o
in formula (6), it is seen that Ey, (S(B; - p2)) = 0.

Formula (6) yields the expectation of S(f, - ) given in formula
(7) of Teng and Risch when the factors (1 - fi)’s are set equal to
(1 - o) for the unaffected siblings; then the d;’s again reduce to 1/2 or
1/4, and m{¥ equal m{3,). Their result is

Varr = En, (S(B1 - P2))

2afo-cu (3 -]
= C~Cxp+ =) (Cyy=C
4 21 20 3 20 21

(r) 1 ; 's 's
+ —291 [cm -coo+ (5) (ch - co,)]
(r

3 5
+%m[2(012-6‘10) <4) (cz+eny

+ (%)Y (cro+cuy (_3)? Clo= (%)f "’12]' (6a)
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We also obtain the variance of S(; ~ p,) under the alternative
hypothesis as:

oz = Vary, (S - ) = En, (S - ) - V2
mi)

= -T(6—rl [r=4(r- 1)ea1c0— '(Czodzo + Cﬂd»])]

()
+ ﬁl_oz [r = 4(r = V)corco0 — Hclydsy + clydip)]
(r s)
+ —(—l {ren =3c) (cra+ ci) - dia + duy )
+r(ci1=3c10) (Cro+ c1) = (dio + dny )
= reppdyy ~2refydy, - rejdy,
+4r(ct, + cl) - 8rciocio
+16¢12010 +4c1201) +4cioer ] - V2. (7

The derivation of the variance formula (7) is similar to that of (6) and

. an outline is given in Appendix D.

Using the arguments similar to those for formula (6a), we obtain
the variance of S(f; — f,) under Teng and Risch’s original partial
ascertainment approximation as

OLrx = Vary, (S(1 - b)) = En, (SBy - B)P - Virg

= Tor _r— 4(r - Veyic0 - r(%) (cp+ c;,)]

. .
+ i r—4(r - 1)corcoo - r<-l-> (cho+ c‘;,)]
16rL 2

my,
16r

+

[ (3) (11 =3c12) (cia + ¢yy) !

3 S
+ r(Z) (c11-3c10) (cro+ cpy) !

1\* 1\ 1\*
—r(z) T4 —2r<5> - r<-2-> o
+4n(ch, + Gg) ~ 8renscig

+ 16¢12¢10 +4c12011 +4cipcn] = V1. (7a)

The variance formula (7a) is different from the corresponding formu-
la(9)in Teng and Risch [1999], as VZGTR in (7a) involves second-order
terms in the conditional probabilities, m(J’ which are not included in
formula (9) of Teng and Risch [1999]. However, the sample sizes
obtained using (7a) are the same as those given in table 3 of Teng and
Risch [1999]. This suggests that their sample size calculations used
the correct the variance.

To obtain the variance of S(p; - f>) under the null hypothesis, we
set f> = f;.= fy in formula (7) yielding;

%= Vary, (S(1 - b))
S IECNEAREY
S HHRORON ®

where ga1) = g12 + €21 and g(10) = g10 + &o1-
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Required Number of Sibships for Various Statistics

The Statistic of Teng and Risch

The use of statistic (5) requires an estimator of 6. Teng and Risch
use

=L )+ 2
TR 16n(1V V) o )

where

2[00 @00
BURECEE]

Using the law of large numbers and calculations similar to those in
Appendix C, it can be shown that 67, converges to o? = Eé%,, where

%= Te Im&f} [1 = ciodg - chidy ] + mia) [1 = cydy - chodiol)
fg m{iH(c1z + e (@12 + di) + (cro+ e ) (dio + duy)
= 2c1yd), = cppdiy = cipdi)

*3 22 01 = (cia + enY (din + dy)s

—(cr0+ ) (dig + diy) + ¢}, dy,)- (10)

It is worth noting that o2 = o‘2 under the null hypothesis, but o2 # o’
under the alternative hypothesns The required number of sibships to
achieve the prespecified significance level @ and power 1 - Bis given
by

_(0uz1_a* 052 - p)?

3
Va

(l_i)

This is the sample size formula for the Teng and Risch statistic with
the full ascertainment correction.

To obtain the sample size for Teng and Risch’s original procedure
with the partial ascertainment approximation, we use their formula
(8) for the expectation of 0'z We denote their parameter by o%TR r
Again it can be obtained from (10) by setting the factors (1 - f;) —‘
(1 - fo), i = 1, 2 in the djs and the mg rs. Then, the sample size
formula for the original procedure of Teng and Risch is

_ (0vTRZ1 - o + OarrZi - )
= .

VaTR

(11a)
The Statistic Utilizing the Empirical Variance of the Score
A different statistic can be formed by substituting the sample;

variance of the scores into (5). The sample variance of the scores S; =
Si(p1-po) is

~_1"
'1=E

n
=S )2, where § =1 XS,
Rz
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which is used in place of 62 in the denominator of (5). When the null
(alternative) hypothesis holds, o§. converges to a3 (02). As in (11) the
required number of sibships is given by
AP

2
Va

n= (12)
When o2 > o2, the test statistic based on &% requires fewer sibships to
achieve a prespecxﬁed significance level and power compared to the
method of Teng and Risch [1999], using &2,

The previous result incorporates full ascertainment. The corre-

sponding sample size formula based on the partial ascertainment
approximation is

O%TR(ZI at ). ﬁ)z
aTR

n= (12a)

The Statistic Incorporating an Auxiliary Sample
A third statistic can be based on a consistent estimator of the
variance of the general score under the null hypothesis, o’ We

| - describe two methods for accomplishing this.

. First, the null variance, &2, is a function of the unconditional mat-
ing probabilities: g1), &0y, and g11. Under Hardy-Weinberg equilib-

'~ rium, these unconditional mating probabilities are functions of the

allele frequency, p. This-frequency can be estimated from an inde-
pendent auxiliary sample, e.g., a sample survey of the general popula-
tion for the candidate gene as in Steinberg et al. [2001]. Of course,
one does not need the Hardy-Weinberg equilibrium if one estimates
the mating type frequencies from a random sample of sibships, which

. can be obtained from a survey as in Steinberg et al. [2001].

An alternate auxiliary sample estimates the mating type probabil-

_.iities from a random sample of sibships. Estimates of the mating type
.probabilities, g, are obtained by adapting formula (4) of Teng and
- Risch [1999] and equating observed proportions of different groups
- of sibships to their theoretical probabilities. This leads to the estimat-
- ing equations:

=) s (- (0]
wlo () - - -(2)] -4
i+ ()]

We use the notation n%,, n), and n%; to emphasise that these counts
must be obtained from a sample of sibships that is not ascertained
based on affection status.

Thus, they are different from n,,, n, and n,, in the formula for

62TR. Equations (13) give the estimators for the unconditional mating
probabilities:

-7
Al (-]

=)

g'n—

l'_—|

= I<o
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+—=ny, 14
Pl (14)

where p; and p; are given in (9).

Smce 02 obtained from either type of auxiliary sample converges
to 0' under either the nuil or alternative hypothesis, the required
number of sibships for the corresponding test with significance level
aand power | - fBis

0021 a* Cazy g
e ez B (15)
Va S
The sample size formula based on partial ascertainment approxi-
mation is

2 .
= (0'02[-a+70aTRzl . (15a)

Varr

Numerical Resuits

The required numbers of sibships are calculated as in
Teng and Risch [1999], using a=5 x 10-8(z;_, = 5.33)
and | - #=80% (z, - g = 0.8416). Table 3 provides com-
parisons between full and partial ascertainment for the
three different statistics.

Four different genetic models are considered: (1) dom-
inant: , = ¥2f, fi = f5; 2) recessive: f, = ¥*fo, fi = fo;
(3) multiplicative; f, = ¥2fy, fi = ¥fo, and (4) additive: f; =
*fo, fi = 1/2(f2 + fi). Teng and Risch’s partial ascertain-
ment approximation only depends on the relative risks,
{;— and ﬁ-; baseline penetrance plays no role. They indicate
that this should be a close approximation to full ascertain-

ment when the penetrances are low. The domain of appli- -

cability of this approximation was explored in an exten-
sive set of calculations based on the sample size formulas
((11), (11a), (12), (12a), (15), (15a)). Table 3 reports sever-
al situations when r = 1 that are illustrative of the general
results (available from the first author). The required
sample sizes for a 0.05 level test to have 80% power for
various sibship configurations when f = 0.025, 0.05, and
0.10 and y =2 are given. The results when fy = 0.025 show
that partial ascertainment yields a very good approxima-
tion to full ascertainment. For larger f;, however, the
approximation is less accurate. For example, for a domi-
nant genetic model with allele frequency p = 0.05, r= 1,
s=1,and fy = 0.05, the required numbers of sibships using
the Teng and Risch statistic is 19% more than the value
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Table 3. Number of required sibships? computed from the partial ascertainment approximation and exactly (full

ascertainment) for scores standardized by 87z, 85 and 6

Ascertainment &7r (Teng-Risch statistic) 65 (empirical variance) 6y (auxiliary variance
r=1 r=1 estimate) r= 1
s=1 s=2 s=1 s=2 s=1 s=2
Dominant, p = 0.05
Partial 643 431 610 395 364 242
Full _
Jo=0.025 591 419 558 384 335 243
f=0.05 541 409 508 373 307 245
fo=0.100 447 391 415 356 255 258
Recessive, p = 0.05
Partial 79,752 61,577 79,719 62,445 73,335 57,432
Full
fo=0.025 75,594 61,946 77,561 62,819 69,643 58,073
fo=0.05 71,547 62,448 71,514 63,329 66,047 58,859
Jo=0.100 63,786 63,960 63,753 64,865 59,140 60,993
Multiplicative, p = 0.05
Partial 2,540 1,716 2,507 1,689 1,862 1,263
Fllll cod
fo=0.025 2,379 1,663 2,346 1,637 1,754 1,246 -
f6=0.05 2,224 1,610 2,191 1,584 1,650 1,229 -
f6=0.100 1,928 1,505 1,895 1,480 1,450 1,199 :
Additive, p = 0.05 '
Partial 1,491 1,003 1,458 970 1,007 678
Full
Jo=0.025 1,390 973 1,357 940 944 672
fo=0.05 1,292 942 1,259 910 883 667
Jo=0.100 1,107 883 1,074 852 767 661’

Dominant: f; = y2f, f| = f3; recessive: f, = y2fy, /i = fo; multiplicative: f; = y2f;, f;

5 (5 + fo). Here, y=2.

2 Computed for size 5 x 10-3 and power 0.80.

calculated for complete ascertainment. For f = 0.10, the
partial ascertainment approximation is 44% too high. The
difference increases as the baseline penetrance increases
(table 3). In some cases, the sample sizes computed under
the partial ascertainment approximation are twice the
sample size sizes required for the full ascertainment pro-
cedure when an auxiliary sample is used to estimate 6%.
For instance, from an unreported result, in'a dominant
model with p=0.20,r=2,s=1, and f5 = 0.100, the sample
size for partial ascertainment is 200 while only 116 sib-
ships are needed for full ascertainment. '

Whether or not the partial ascertainment approxima-
tion is conservative depends on the genetic model, allele
frequency, and sibship structure. The partial ascertain-
ment procedure can be anti-conservative. For example,
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using the auxiliary sample estimate of 6%, in formula (5),
under a recessive model withr=3,s=4, p=0.05and fp =
0.100, the sample size from the partial ascertainment
approximation is 1,965 (result not shown) while sample
size required for full ascertainment is 3,637 (see table 5).
Usually, when the baseline penetrance is fo = 0.100 the
partial ascertainment approximation is poor. '

The results in table 3 provide insight into the relative
sample size requirements for full ascertainment for statis-
tics based on 6%, 6% and 63. Standardizing equation (5)

= yfo; additive: o = ¥y, fi -

by &5 leads to slightly smaller sample size requirements |
than standardizing by é7x for the dominant, multiplica- .

tive, and additive models. Standardizing by &y leads to

* very considerable reductions in numbers of required sib-

ships for dominant, multiplicative and additive models
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Table 4. The required number of sibships for 80% power with a one-sided a= 5 x 10-8 level test standardized by the
empirical variance estimate &2

f
|
/
|
!
i
!

Dominant
p=0.05 . : :
Jo=0.025 558 384 233 148 125 79 66 61 ‘
fo=0.050 508 373 220 145 128 77 66 - 62 |
5 f=0.100 415 356 193 142 141 7 67 68 .
| p=0.02 , |
] / Jo=0.025 372 247 269 164 132 153 121 105
| " fo=0.050 324 221 241 147 . 118 136 106 91
f Jo=0.100 236 174 185 114 94 102 78 66
L p=0.70 ' ) i
Jo=0.025 4,670 3,341 © 6,134 3,790 2,930 5,461 3,775 2,972 b
Jo=0.050 3,798 2,634 4,981 2,981 2,238 4,260 2,874 2,206
fo=0.100 2,321 1,482 3,035 1,670 1,161 2,341 1,474 1,054
Recessive - )
p=0.05
Jo=0.025 75,561 62,819 19,348 14,728 13,184 4,229 3,777 3,546,
Jo=0.050 71,514 63,329 18,885 15,183 14,229 4,417 4,102 3,997
Jo=0.100 63,753 64,865 17,932 16,307 16,912 4,881 4,951 5,246
p=0.20 -
fo=0.025 1,935 1,542 654 476 424 194~ 173 164
fo=0.050 1,809 1,529 630 480 446 197 181 176
fo=0.100 1,569 1,515 581 495 “503 204 202 211
p=0.70
Jo=0.025 362 246 297 190 158 196 167 153
Jo=0.050 317 219 270 171 140 177 147 130
fo=0.100 232 168 215 133 107 136 106 89
Multiplicative
p=0.05
f0=0.025 2,346 1,637 1,015 683 590 351 310 293
fo=0.050 2,191 1,584 980 676 596 351 315 302
Jo=0.100 1,895 1,480 910 661 612 351 327 324
p=0.20
Jo=0.025 769 546 431 284 239 185 156 141
Jo=0.050 702 514 406 272 233 179 152 139
f6=0.100 576 453 354 248 221 167 145 136
p=0.70
Jo=0.025 783 551 596 391 328 326 281 257
Jfo=0.050 668 480 538 354 297 303 257 232
fo=0.100 464 347 420 278 233 250 206 181
Additive
p=0.05
f6=0.025 1,357 940 578 383 329 197 172 162
Jo=0.050 1,259 910 556 378 333 196 174 166
f=0.100 1,074 852 511 371 347 194 180 180
p=0.20
Jo=0.025 595 412 368 236 195 176 145 129
f=0.050 537 383 342 222 186 166 137 123
fo=0.100 429 326 290 193 167 146 121 110
p=0.70
fo=0.025 1,165 826 927 610 509 508 431 391
fo=0.050 982 709 828 547 456 471 395 354
fo=0.100 661 492 627 416 345 386 315 274

Dominant: f; = y2fy, fi = f; recessive: f = 7%,)’, = fo, multiplicative: £, = y2f, /i = vfy; additive: f = Y, fi =

+ (i + fo). Here, y=2.

Statistical Properties of Teng and Risch’s
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Table 5. The required number of sibships for 80% power with a one-sided =5 x 10-8 level test standardized by a
consistent estimator of the null variance, 83, from an auxiliary sample

| r=1 r=2 r=3
s=1 s=2 s=1 s=2 s=3 s=2 s=3 s=4 |
‘ Dominant
p=0.05
| fo=0.025 355 243 80 55 49 24 21 20
| Jo=0.050 307 245 75 55 52 23 21 20
i fo=0.100 255 258 . 65 56 62 22 22 24
| p=0.20
| fo=0.025 322 226 178 117 99 100 82 73
| Jo=0.050 279 206 156 105 90 88 71 63
| Jo=0.100 204 170 116 82 74 65 53 48
| p= 0.70
| Jo=0.025 5,043 3,622 6,393 3,984 3,107 5,778 4,017 3,183
Jo=0.050 4,047 2,814 5,106 3,077 2,325 4,430 2,995 2,305
Jo=0.100 2,384 1,521 2,971 1,639 1,138 2,317 1,447 1,024
| Recessive
‘ ' p=0.05
‘ ' Jo=0.025 69,943 58,073 15,524 11,850 10,571 2,770 2,432 2,253
| Jo=0.050 66,047 58,859 15,174 12,311 11,561 2,924 2,693 2,611
| fo=0.100 59,140 60,993 14,453 13,449 14,135 3,310 3,390 3,637
p=0.20 K
1 Jo=0.025 1,608 1,291 428 318 283 110 97 91 .
| fo=0.050 1,508 1,293 411 322 300 111 101 97 *:
; fo=0.100 1,316 1,309 377 336 348 115 113 18"
| p=0.70 -
| fo=0.025 423 292 351 233 195 272 229 206
| Jo=0.050 361 252 306 199 163 230 186 160
| fo=0.100 251 181 220 138 109 153 113 89.
| Multiplicative r
| p=0.05 :
Jo=0.025 1,754 1,246 535 369 323 146 129 122
Jo=0.050 1,650 1,229 518 370 335 147 134 130
Jo=0.100 1,450 1,199 484 375 364 151 146 150 -
p=0.20 '
Jo=0.025 650 474 296 203 174 118 100 91
; fo=0.050 596 452 278 195 171 115 98 91
‘ fo=0.100 496 412 242 181 168 107 95 91
| ~ p=070
| f=0.025 877 620 690 460 387 422 360 327
| Jo=0.050 737 528 607 403 335 376 313 277
‘ Jo=0.100 494 364 445 292 238 282 222 186
| Additive
i p=0.05 )
Jo=0.025 994 672 262 180 159 71 63 60
Jo=0.050 883 667 252 181 165 72 65 63
f0o=0.100 767 661 232 184 184 73 70 73
p=0.20
; Jo.=0.025 507 363 252 170 144 115 96 87
| fo=0.050 460 342 233 160 139 109 91 83
| fo=0.100 371 303 196 142 129 96 82 77
| p=0.70
| Jo=0.025 1,288 917 1,049 697 583 623 527 476
Jo=0.050 1,072 771 918 609 505 560 464 410
‘ Jo=0.100 700 512 662 434 351 425 335 281
|
| Dominant: f; = ¥2fy, f; = f3; recessive: o = ¥, /i = fo; multiplicative: fo = y%fp, fi = v/fo; additive: f, = 7o, f =
1 5 (/2 + fo)- Here, y=2.
?
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more modest reductions for recessive models (ta-
The calculations in table 3 for &% ignore the possi-
¢s of obtaining auxiliary data to-estimate 62, how-
or. Note the similarity in sample sizes requiredvby the
eng-Risch statistic with full ascertainment conditioning
" d the statistic based on o
;" Because one may wish to test for an association either
ased onlyona sample of sibships or based on a sample of
“sibship and auxiliary data to estimate &2, we provide
more extensive sample size tables for the statistic (5) stan-
dardized by 8 (table 4) and the statistic standardized by
8o (tablé 5): Standardizing by & requires smaller sample
sizes than standardizing by &s when the frequency is in a
Jow to moderate range. When the allele frequency is high,
the procedure using the empricial variance, 6';:, requires
- somewhat fewer sibships, as reflected in the results forp=
© 0.70. The results in tables 4 and 5 also highlight the diffi-
~ culty of detecting a rare recessive trait even using the most
_ powerful design. Larger sibships are more informative (ta-
“bles 4, 5), but they are harder to obtain.
Sample sizes in tables 4 and 5 imply that the sibship
structure r = 2 and s = 3 is more informative than the
sibship structure r =3 and s = 2 when the allele frequency
“is high p = 0.70. This pattern also holds for the sibship

A',."_structures r=1,s=2andr=2,s= 1. These results suggest

" that when the allele frequency (p) is high, unaffected indi-
viduals are rare and hence more informative. The sample
sizes needed by the Teng-Risch statistic with full ascer-
tainment are very similar to those in table 4. Only when
p = 0.70 were the sample sizes needed by the Teng-Risch
statistic with full ascertainment noticeably less than the
corresponding values in table 4 (details are available from
the first author).

Simulation;

The sample sizes given in tables 3-5 were based on
large sample theory. To assess their applicability for real-
istic sample sjzes, we conducted simulations for the dis-
cordant sib pair case, r = s = 1. First, the accuracy of the
mean and variance of the various statistics given in for-
mulas (6), (6a), (7), (7a), and (10) were confirmed and
then the power of the tests was studied.

For each genetic model we generated a set of sibship
genotypes, assuming Hardy-Weinberg equilibrium, for a
sufficient number of sib pairs that it was virtually certain
that the number of discordant pairs would be larger than
the required number computed from equation (11) for the
Teng-Risch statistic with full ascertainment. Given each

Sfatistical Properties of Teng and Risch’s
Sibship Type Tests

subject’s genotype and the penetrance parameters, and
assuming that the affection status of each subject is condi-
tionally independent of all other subject’s phenotypes,
given his or her genotype, we generated a random affec-
tion status (phenotype) for each member of each sibship.
We generated such phenotypes sequentially, sibship by
sibship, until the required number of sibships with discor-
dant phenotypes was obtained. From this sample of dis-
cordant pairs, we computed each of the three statistics
with 87x, 65 and & in equation (5) as well as estimates of
parameters in table 6. The size (a), power (1 - f) (table 7)
and average of the parameter estimates (table 6) were
obtained from 100,000 simulated data sets for low pene-
trance (fo = 0.001), which requires a large sample of sib-
ships to accumulate the required numbers of ‘discordant
phenotypes. For fy = 0.10, we generated 1,000,000 data
sets. Different simulated data sets were obtained for each
choice of fy and genetic model in tables 6 and 7. Thus esti-
mated parameter values and powers in tables 6 and 7 are
correlated across columns but indépendent from row to
row. The results in each row of tables 6-and 7 are based on
the same simulated data. As an example, consider the
dominant model with p = 0.05, fo = 0.10 and y = 2.
According to formula (11), one needs 447 discordant sib
pairs to achieve 80% power. For each simulated data set,
we generated 4,500 sib pairs according to the joint sib pair
probability. Then we determined the affection status of
the individuals in successive sib pairs, stopping once there
were 447 discordant pairs. This process was repeated
1,000,000 times.

In order to estimate &2 from an auxiliary sample, we
generated genotypes and phenotypes as described above
for an unselected sample of 1,000 sib pairs and applied
formula (14). An independent auxiliary sample was gener-
ated for each of the genetic models and choice of fo stud-
ied in tables 6 and 7.

Theoretical calculations of vg, oﬁ and o? and their par-
tial ascertainment approximations Vurz, Garz and OArR
show excellent agreement for fo = 0.001, but differences
are evident, especially between v, and Vg, for fo=0.1
(table 6). Simulations agree well with the exact formulas
for full ascertainment (table 6). Simulations at the null
hypothesis yielded average estimates of o% that agreed
with theory to 5 decimal places for 6%, 6% and & (results
not shown).

“The accuracy of the required sample sizes is of greater
practical importance. From equation (11), we calculated -
‘the sample sizes needed for the Teng and Risch statistic
under full ascertainment to achieve 80% power with a
one-sided =5 x 10-8 level test. For these sample sizes,
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Table 6. Theoretical parameter values and average estimates from simulations

Dominant: f; = ¥y, fi = f3; recessive: o = yfo, /i = fo; multiplicative: f5 = 2o, fi = v/fo; additive: f5 = 2o, fi = -;- (f, + fo). Here, y=2.

Penetrance Full ascertainment Partial ascertainment Simulated

Va o ol VaTR Trr Oerr P e & ‘
|
| Dominant, p = 0.05
‘ Jo=0.100 0.03155 0.01055 0.01152 0.02618 0.01098 0.01167 0.03115 0.01055 0.01152
l Jo=0.001 0.02623 0.01098 0.01166 0.02618 0.01098 0.01167 0.02620 0.01097 0.01166
|
i Recessive, p = 0.70
‘ Jo=0.100  0.06274 0.02394 0.02787 0.04464 0.02147 0.02346 0.06274 0.02394 0.02787

Jo=0.001 0.04476 0.02149 0.02349 0.04464 0.02147 0.02346 0.04475 0.02148 0.02348
! Multiplicative, p = 0.20
| Jo=0.100 0.03970 0.02383 0.02541 0.03333 0.24444 0.02555 0.03970 0.02384 0.02541
} Jo=0.001 0.03339 0.02444 0.02555 0.03333 0.02444 0.02555 0.03340 0.02445 0.02556
| Additive, p=0.20
} fo=0.100  0.04587 0.02368 0.02578 0.03750 0.02422 0.02563 0.04586 0.02368 0.02578
: Jfo=0.001 0.03757 0.02421 0.02563 0.03750 0.02422 0.02563 0.03759 0.02422 0.02563
|
|
\
\
|
\
|

Table 7. Simulated power (and expected

power in parentheses) of the statistics Penetrances n Teng-Risch Empirical Variance from
standardized by &%, 8%and 832 variance variance auxiliaq sample
x & g
Dominant,.p =0.05 :
f0=0.100 447 0.8485 (0.8003) 0.8870 (0.8605) 0.9919(0.9921) :
fo=0.001 641 0.8279 (0.8005) 0.8594 (0.8432) 0.9918 (0.9922)
Recessive, p = 0.70 .
Jfo=0.100 264 0.8370(0.8022) 0.9010(0.8981) 0.8442 (0.8460)
f0=0.001 442 0.8281(0.8016) 0.8675 (0.8622) 0.7002 (0.7016)
Multiplicative, p = 0.20 '
fo=0.100 609 0.8180 (0.8004) 0.8497 (0.8453) 0.9271 (0.9284)
fo=0.001 868 0.8148 (0.8001) 0.8362 (0.8320) 0.9277 (0.9293)
Additive, p=0.20
fo=0.100 462 0.8233(0.8012) 0.8629 (0.8595) 0.9324 (0.9344)
fo=0.001 827 0.8150 (0.8009) 0.8437 (0.8408) 0.9304 (0.9311)

. Dominant: f; = ¥, fi = f3; recessive: f» = ¥, fi = fo; multiplicative: f = 2o, fi = v/6;
. o additive: f5 = ¥, fi = 5 (/2 + fo). Here, y=2.
a  The statistics are given by equation (5) with three different choices for 2.

the expected power for tests based on &5 and 6 in equa-
tion (5) were calculated by solving equation (12) and (15)
for B. Unreported simulations under the null hypothesis
/2 = fi = fo confirm that all three tests have nominal size.
Under various alternatives shown in table 7, the simu-
lated values agree to two decimal places with expected
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power for the statistic standardized by &y. The simulated
power exceeds the expected power very slightly for the sta-
tistics standardized by 65 and 67r. The most extreme dis-
crepancy occurred for the statistic standardized by 67r
with f5 = 0.10 in a dominant model; in this case the simu- -
lated power was 0.8485 compared to an expected power
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of 0.8003. These slight excesses, though demonstrable in
such large simulations, would not seriously compromise

* the study design. Potential reasons for these slight discrep-

ancies may be due to: (1) The sample sizes may not be
adequate for the normal approximation to hold, especial-
ly as the variance is estimated. In unreported simulations
with larger numbers of sibships these discrepancies were
smaller. (2) The estimator of the variance may be corre-
lated with the score in the numerator. Our experience in a
similar situation has been that the rate of convergence to
normality is slower.

These simulations indicated that the statistic based on
6% is more powerful than that based ofg except for reces-
sive models, in agreement with tables 4 and 5. Both these
statistics tend to be more powerful than the one based on

&pe

Discussion

A critical assumption underlying the original investiga-
tion of the properties of the TDT-like statistic proposed
by Teng and Risch [1999] is that unaffected sibs are like a
random sample of the general population. Those authors

asserted that this assumption should ‘nearly’ hold when
 the locus-specific penetrances are low. By incorporating
.the status of the unaffected sibs in calculating the distribu-
. tion of the Teng-Risch statistic, calculated from equation

- (5) with 627R, we are able to assess when the key assump-
'~ tion holds. The numerical results and simulations based

i
H
3

~ on full ascertainment indicate that their partial ascertain-

ment conditioning is a reasonable approximation when
the penetrances are low. Depending on the genetic model
and other parameters, the partial ascertainment approxi-
mation can either be conservative or anticonservative.

We present sample sizes (tables 4, 5) for designing
studies in which sibships of fixed size are sampled condi-
tional on the number of affected sibs. Because the family
sizes are fixed, such sampling is conditioned on both the
number of affected and unaffected sibs (‘full ascertain-
ment’). Table 4 is useful when one plans to test for an
association using data only from these sampled sibships
and based on the empirical variance estimator 3. Table 5
is useful when one has access to data from an auxiliary
random sample for estimating of). Risch and Teng [1998]
concluded that using unrelated controls is more efficient
than family controls. Our calculations support this con-
clusion for studies of diseases with low penetrance.

The procedure based on an auxiliary sample has the
advantage that it requires a smaller sample of the sibships

Statistical Properties of Teng and Risch’s
Sibship Type Tests

with affected members (tables 3, 5). As such sibships may
be difficult to accrue, the cost saving may be appreciable.
Unless population-based data are available for estimating
of,, however, there will also be a cost to obtaining an auxil-
iary sample of randomly selected individuals, sibships or
parent pairs to estimate of,. Moreover, one must evaluate
whether the general population sample used to estimate
of, is representative of the source population for the sam-
pled sibships with affected members. General population
surveys, such as in Steinberg et al. [2001], may have suffi-
cient coverage, when data for several years are used, to
estimate the allele and genotype frequencies for the source
population. While the auxiliary sample approach does not
require Hardy-Weinberg equilibrium when parental mat-
ing types are estimated from a survey, if the gene affects
the age of onset of a fatal disease, then the genotype fre-
quencies in the offspring may differ slightly from their
Mendelian expectation based on the parental genotypes.

The approach discussed here compared the candidate
allele frequency in affected sibs to the estimated frequen-
cy in their parents. Genotype data on unaffected as well as
affected sibs are needed for this analysis. Witte et al.
[1999] and other authors cited in the introduction pro-
posed alternative analyses for such data.

In practice, one may have sibships of several (K) differ-
ent structures, say (7, $,), ¥ = 1,..., K. One then has a sta-
tistic T, = X, Si(p, — p) with estimated variance nué’}, for
each type (u). A common approach uses

%o T

Teomp = ——pmtm=s ,
com m

=1 u

although a weighted sum of the T}’s can be more efficient
against a particular alternative.

A reviewer raised the question of what null hypothesis
is being tested with the Teng-Risch type of statistic. Fol-
lowing Teng and Risch [1999], we derived our distribu-
tion theory under the assumption that phenotypes of sib-
lings are conditionally independent given their respective
genotypes. Thus, the strong null hypothesis is fo = f; = f2
and conditional independence. However, the same null
distribution holds under the ‘weak null hypothesis’ that
parental mating types are independent of sibling pheno-
types. The strong null hypothesis implies the weak null
hypothesis but not vice versa. In certain applications, the
weak null hypothesis might be satisfied but not the strong
one. For example, if one is genotyping a marker that is not
linked to the disease gene, the weak null hypothesis
should be satisfied because the disease is independent of
the candidate gene, but the conditional independence
condition might not be satisfied because the disease gene
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might be circulating in the family. Similarly, if an un-
measured environmental factor (‘random effect’) inde-
pendent of marker genotype influences phenotype, the
weak null hypothesis, not the strong one, is likely to hold.
In order to calculate power in this article, however, we
have relied on the conditional independence assumption,
as would be appropriate for the study of a candidate dis-
ease gene.
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Appendix A: Derivations of m

We give the derivation for m" ) The derivations for all other m" 5
follow similar logic and are ava1lable from the first author. Usmg
conditional independence, we have

m{d = P|G = (2,1)|C, = Aff, C; = Unaff}

_PC = Aff, C; = Unaff|G = (2,1)} g2
PIC, = Aff, C; = Unaff}

(’”) [PIC) = AffIG= 2,)I [PIC) = Unaff|G = 2,1}
,

<r+s)
= K’ [PIC, = Aff|C) = AAJP(C) = A4|G = (2.1))

rs

KI',.S'

+ PC, = Aff|C) = Aa}P{C| = Aa|G = 2,1)}}’
x [P|C} = Unaff|C; = AA)P|C = A4 |G = (2,1)}
+ P{C; = Unaff|C; = Aa}P|C; = 4a|G = (2,1)|}

(r + s)‘ ’

. r 1y '

=L (Y Gearia-pra-f (16)
: Kys \2

where K, = P|C, = Aff, Cs = Unafﬂ Here ‘Cy = Aff” is the event that

one offspring is affected, and ‘C; = A4’ is the event that the genotype

of the offspring is AA. It can be verified that the conditional mating

type probabilities (m" %) are the unconditional mating type probabil-

ties {g;) under the null hypothesis (f; = f; = fo). The nine condltlonal

mating type probabilities are given in table 1.
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Appendix B: Derivations of the Conditional
Genotype Probabilities

We give the derivation of the conditional genotype probability for
group I'V. The derivations for all other groups (see table 2) are similar
and are available from the first author. The conditional genotype
probability of group I'V can be decomposed as

P, j1, 0, ks, ky, 0|C, = Aff, C; = Unaff)
=Py, /1,0, kg, ki, 0, G = (2, 1) or (1, 2)|C, = Aff, C; = Unaff}
+ Py, j1, 0, ka, ki, 0, G = (1, 1)1C, = Aff, C, = Unaff}.

We have
Plja, 1,0, ka, k1,0, G = (2, D) or (1, 2)|C, = Aff, C, = Unaff)
= mE) Pl ji, 0, kz, ki, 01G = (2, 1),C, = Aff, C; = Unaff)

(rs)Pllz’]l’O ks, k1,0, G = (2, 1), C, = Aff, C; = Unaff)
) PG = (2, 1), C, = Aff, C; = Unaff)

m(’.“f) ( r+s )
21 r
PIG 2, 1), C; = Aff, C; = Unaff}

x P|C, = Aff, C;=Unaff )5, ji. 0, ka, ki, 0}
X Pljiz, j1, 0, ko, ky, 01G = (2, DIp{G = (2, 1))

i) (705 ) st - (U () (5) e
PIG=(2,1),C = Aff, C, = Unaffl '

Using the conditional independence, we could show

PIG =(2,1), C,= Aff, C; = Unaff)

(VLY Ay 1 -m + (- g
("G

Hence
P2, j1, 0, ky, k1,0, G = (2, D) or (1, 2){C, = Aff, C; = Unaff]

.S r s 7 it gk, . !
= m}z‘:i (j2 ) < ) o, ol dy; dy. un

Similarly, - L
P, ji, 0, ka, k1, 0, G = (1, 1)|C, = Aff, C; = Unaff]

=iy (1) N ) chcfy i i as) |

Adding (17) and (18) together, we obtain
P{,Zs.]la 0 kz, kh 0 |Cr Aff C Unafﬂ

r s . w 3 :
=<j2) <kz) [mfzf; 21 CZOd’ﬁ\l dz"o’“m(u)“'z“n dlkn . (19
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« Appendix C: Derivations of Expectation v,

Let PIV| C, = Aff, C; = Unaff] denote the general term of the
ndmonal genotype probability for group IV. Similar notation will

0!
be used for other groups as well. Then,
i vy = Eg(S(P1 - P2))

-3 (h_z';f_l) PIV|C, = Aff, C, = Unaff}
w

+3 (J_l_i_fﬁ) P{V|C, = Aff, C; = Unaff}
v r

D> (11:1_0) P{VI|C, = Aff, C; = Unaff],
v\ 2r v

where the summation Xy is over all possible configurations within

group IV.
First, we compute the summation for group IV:

> (12_211) PIV|C, = Aff, C; = Unaff)
AN

(B [(7) () mhe ot
’ w 2

Lo (D) () iyl ity

. Because the six groups are mutually exclusive, we have the following
| constraints forgroup IV:ja+ ks = Lji+ky = L a+ji=r,and ky + k)
=s. Hence, jo - j1 = 2j, - r,and

NN s N
Z <}24rjl> (jz) ( /\’7) it o ho i &
w 2

m(,_‘) s hsres-l-k p !
37 % a(])()) i

r Liao hzi-k J2

s hsr+s-l-k p s
- r 2 i gk kn]_
Iz (7)) ) et
Notice that

s hgr+s-l-k r s o
23 a(0)(0)chchdid
J2/ Nka

k=0 pzl-k

s 1) (}) st

> (1) () i

/\1 |j1 =0

+ gy =y Zh( )( )“éx%hdzldioh]

ja=1

[Z Zh(h)(k ) o " ) diok_rCZIle]

=0 j,=0
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=2{rcy - rch, di|] (20)

where Iy, - o is an indicator function. Similarly,

5 fpsres-l-k !
PN S ok g gl gla ’
Z z ol % b ot dag |
k=0 jhzl-k J2 ky i |
=r-reyydyg - rey, dyy @1) |
Adding (20) and (21), we have
=i\ (T .

z,,:< ar >(j2) (k>m§£f§ 5 oy dyi doy

l a

ms
'—i—l[cﬂ - C0+ Chodye - hdyl (22)

Repeating the above algebraic procedures with the notice that ¢, +
¢y + ¢jp = L, we obtain .

(228) (1) () e

w

b oy iyl

(r.5)
= m:_ [(ciz=cp) (cia + ey~ {dia + dny - ¢l diy + ¢}, i
23)
Thus, we have
z (’——2 —J ') PUV|C, = Aff, C;= Unaff} {
v 4r ‘ |

(rS)
= ——‘—14 [ea = €20+ ¢ho d3g = €31 d31]

{r.s]
+-m7—[(612—611)(012+0n)’ H(dip+dyy~cl,diy+cl, di)) 24)

Similar computations for group V give |

Y (ﬂf‘f_") PV|C, = Aff, C, = Unaff}
v T

(l 5)
= '—291 lcor = coo + €go A0 = €51 doi]

(r.5) i
+%—-[(Cu-clo)(cn+clo)’ U(dio + dir) - ¢} d}y + ¢l diol (25) f

For group VI, we have

% (222) pyaic, = aff, = Una
v N 2r

-3 (12_‘19> PVI|C, = Aff, C, = Unaff)
Overall 2r

(’2 ) pvI|C, = Aff, C, = Unaff)

(12 "’) PIVI|C, = Aff, C; = Unaff)
r

(12 JO) PIVI|C, = Aff, C; = Unaff)
N 2r

(122 10) P\VI|C, = Aff, C; = Unaff)
.
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2(’2 JO)P{VIIC AfY, C, = Unaff)
v r

(.S
—-’112—[(012 —c10)-(ch, d3y=Cho dig)-ciz (cr2 + ent) = (i +du¥

(r.5)

m
"'Tgr- [4cyz c11 (crz + €n) =2 (diz + du)

+4rd) (e + o)y -2 (dip + dn)

~4reyy (crz+ ey~ (o + dur)f

+ oo+ cu = (dio+ duf = ciodio* Crp dizh (26) +r{cp+ ) (dia +dny - e di - refydis) @n
where the first summation on the right hand side of (26) is over all P v
possible configurations of (j2, ji, jo, k2, ki, ko)- or group ¥,
Adding (24), (25), and (26) together, we obtain v,.
’ Z( : ) PIV|C, = Aff, C, = Unaff)

Appendix D: Derivations of Variance af

The algebraic steps are very similar to the computation of the

expectation in Appendix C.

EnS0-p9p= X (A1) PUVIC, = AR, €= Unaff

w

. - . 2
+3 (M) PV|C, = Aff, C, = Unaff}
v 4r

The three terms in the right hand side of the above formula are: for

group IV

by (”4") PUV|C, = Aff, C, = Unaff)
}iZ r

(r,5)
= _”l_’g_;l [ = 4(r = 1eaica = Hchy dSo + €1 )]
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