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SUMMARY. To examine the time-dependent effects of exposure histories on disease, we estimate a weight |
function within a generalized linear model. The shape of the weight function, which is modeled as a cubic |
B-spline, gives information about the impact of exposure increments at different times on disease risk. The
method is evaluated in a simulation study and is applied to data on smoking histories and lung cancer from
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a recent case—control study in Germany.
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1. Introduction

In studies of acute exposures, time since exposure is clearly
defined and often has great influence on the risk of disease.
For extended exposures, the definition of time since exposure
and its relationship to disease outcome are no longer obvious.

In a study of lung cancer where smoking histories have been
collected, the question is raised how the time pattern of smok-
ing affects disease risk. Various attempts have been made to
specifically examine this relation (Doll and Peto, 1978; Lubin
et al., 1984),

We propose the estimation of a time-dependent weight func-
tion. Suppose exposure histories z;{(¢), ¢ = 1,...,T; and i =
1,...,n, are collected, where z;(t) denotes the cumulative ex-
posure of individual ¢ received between times ¢t — 1 and ¢ prior
to an index date (e.g., the date of interview in a case—control
study). Without loss of generality, we assume equal time in-
tervals.

Generally, investigators apply models in cumulative expo-
sure Xt z;(t). We propose a linear combination of the incre-
mental exposures, namely

Z w{t)z;(2), (1)

t

where w(t) is a weight function to be estimated. This, lin-
ear combination can be interpreted as effective exposure. The
shape of the weight function gives information about the im-
pact of exposure at different times on disease risk. Cubic B-
splines are used to model the weight function. Its parameters
are estimated via a constrained maximization of the likeli-
hood.

The method is illustrated on data from a recent German
case—control study on smoking and lung cancer with about
4300 cases and a similar number of controls (Kreiehbrock et
al., 1992).

2. Method: The Spline Weight Function
2.1 B-Spline Weight Function Model

For a response variable y, a generalized linear model that
includes time-weighted effective exposure (1) as covariate is
given by ¢{E(y)} = n, where g(-) is the link function, and the
linear predictor n; for the ith individual is given by

T;
m=Po+ By wtm)+ A i=1..,n (2
t=1

The parameter 3, represents the impact of effective exposure

1105




(ep0D 's'N ‘L1 ML) me| ybBLAdoD Ag parosiold aq Aew [eusiep

1106

(1) on y and X is the column vector of parameters for
additional covariates z; = (21, ..., Ziq)-

The weight function w(t) is modeled as a cubic B-spline
on [0,T), where T = max;{T;}. Splines are continuously
differentiable piecewise polynomial functions (de Boor, 1978).
B-splines are used because they have minimum support
among all sets of basis functions for the space of cubic splines.
This property reduces correlations among the columns of the
design matrix and thereby eases computations. The B-spline
representation of a cubic spline is given by

> 6;B;(1), @)
j=—3

where 8; are parameters to be estimated. Conditional on inner
knots 0 <t < - < tm < T, the B-spline basis functions
BJ (t) are known functlons of t. Formulas for the B;(t) are
given in the Appendix.

Note that the property of the B-splines, %72 _3 B; =1
for all ¢t € [0, 7], can be used to define a likelihood ratlo test
Ho: 01 = -+ - = 6 = 1, i.e., there is no time variation in the
effects of exposure. This test has m + 3 d.f.

2.2 Constrained Mazimum Likelthood Estimation

Since the values of the cubic spline are viewed as weights
for exposure increments received at certain times in the
past, we constrain the spline function such that welghts are
nonnegative, §; > 0 for all j, and standardized, vl w(t,8) =
T. Risk eﬁects that depend only on cumulative exposure and
not time correspond to w(t) = 1 for all ¢.

If the maximum likelihood estimate @ lies on the boundary
of the restricted parameter space, the usual asymptotic theory
may mnot apply. In this case, confidence intervals for the
weight function are obtained by nonparametric bootstrap
sampling. For the bootstrap, the values of the estimated
weight function at ¢ = 1,...,T are calculated for each set
of parameter replicates and the variance of those values is
used to construct asymptotically normal pointwise confidence
limits for the spline weight function at ¢ = 1,...,T. The slope
of the estimated weight function and corresponding pointwise
confidence intervals can also be computed.

2.3 Knot Selection

Usually one would try to select the best knots with respect
to some criteria. The knots can be viewed as nonlinear
parameters that have to be estimated according to a goodness-
of-fit criterion. Several methods to do this are described in
the literature and are in general referred to as adaptive knots
(Hastie and Tibshirani, 1990; Friedman, 1991).

These methods are complicated and numerically cumber-
some, so we used the following intuitive approach that is
similar to percentile categorization. For m inner knots and
thus m -+ 1 intervals, choose knot locations such that each
interval includes 1/(m+1) x 100% of the population exposure.
More precisely, choose the jth knot ¢; so that ¢; = max{t =
1,..., T|EPy Bhy 2:(0)/ Sy Timq () < (-1)/(m+1)}-

In the following example, the number m of knots is
restricted to the sequence m = 2,...,8 to ensure flexibility

w(t, ) =

of the spline weight function while avoiding overparameteri-
zation. The final model is the one that minimizes the Akaike
information criterion (AIC) (McCullagh and Nelder, 1989),
AIC(m) =

—2log L{B,0,\) + 2(m + q + 6).
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3. Example: Lung Cancer and Smoking

We use the standard unconditional logistic model for the
analysis of a case—control study on lung cancer and smoking.
Then E(y;) = p; = Pr(y; = 1| z;(t),t =1,..., Ty, 2;) and the
link function is g{u) = log{u/(1—p)}. Parameter 31 of model
(2) represents the log odds ratio per unit effective exposure
(1). Alternatively, S1w(t) can be viewed as the log odds ratio
per unit exposure received at time ¢ in the past.

3.1 Data Description

We apply the method to data from a case-control study
carried out from 1990 through 1996 in Germany (Kreienbrock
et al., 1992). Cases include patients aged 75 years and under
with histologically confirmed primary lung cancer. Controls
are population based and frequency matched to cases on age
(within 5 years), sex, and place of residence (23 regions).

Historical smoking data on the type and amount of tobacco
products smoked from age at start of smoking to age at
interview are obtained by intervals of constant smoking habit.
For a cigarette smoker who also smoked cigars, cigarillos,
or pipes, the tobacco exposure equivalent is added to the
exposure from cigarettes. After excluding 174 individuals who
smoked cigars, cigarillos, or pipes only and 43 individuals with
incomplete smoking histories, the study population includes
4304 cases and 4526 controls.

Since smoking histories are based on years, exposure
profiles were reconstructed in 1-year intervals from birth to
interview. Exposure variables z;(t) denote the number of
pack-years (1 pack-year = 365 x 20 cigarettes) smoked by the
ith individual during the year ¢ years prior to the interview
(t =1,...,T;, where T; is attained age of the ith individual).
The response variable y is the case-control status.

Analyses are adjusted for the matching variables and
asbestos exposure (ever/never). Models for females only are
not adjusted for asbestos exposure since few women have been
exposed.

3.2 Results

We specified models with four knots for females and six knots
for males based on the AIC. The models fit significantly better
than a simple model in cumulative exposure, ie., p < .001
for males and females for testing §; = 1 for all j. Figure 1
shows the estimated weight functions and their slopes with
asymptotic pointwise 95% confidence intervals from 1000
bootstrap replications.

Estimated weight functions for both sexes show a global
maximum at about 5 years before interview and are
sharply decreasing thereafter until they are about one or
smaller for more than 15 years in the past. For males and

females, there are local maxima, 46 and 22 years, respec- .

tively. However, confidence intervals are wide and preclude
meaningful interpretation. The slopes of the estimated weight
functions decline sharply within the first 8 years before
interview and approach zero thereafter.

The bootstrap parameter replicates for the unconstrained
parameters (i.e., the intercept and the adjustment variables)
are symmetric and normally shaped. However, due to con-
straints, the replicates are skewed to the right for some of the
spline parameters.

g

g

Weights
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Figure 1. Estimated cubic B-spline weight functions and

their slopes from logistic regression of lung cancer risk on
smoking profiles for females and males. Approximate point-
wise 95% confidence limits are based on 1000 bootstrap
replications. Circles on the horizontal axes indicate spline
knots.

The odds ratio per 1 pack-year effective exposure (exp(,[?l))
is 1.06 (95% CI [1.01, 1.11]) for females and 1.04 (1.03, 1.05)
for males. They are slightly smaller than the corresponding
odds ratios from a standard model with cumulative exposure.

We also estimated the weight function within categories of
sex and age. The weight functions reached a maximum 3-11
years prior to interview, before decreasing. Although younger
age groups show a steeper decrease with time before interview
than older age groups, these differences could be due to chance
as the models were homogenous over sex and age strata.

4. Simulation Study

We carried out a simulation study to study the characteristics
of estimating weights with predefined disease-exposure
patterns. Hypothetical smoking profiles are generated for
T = 60 years prior to interview based on the German smoking
data. With probability .25, an individual is considered to
be a lifelong nonsmoker. With probability .75, the number
of pack-years smoked during the year prior to interview is
defined as z;(1) = max(0,.47 + .3672v;), s = 1,...,n, where
v; ~ N(0,1). The truncated normal distribution is chosen
so that the expectation over its nonzero support equals the
mean yearly exposure in the German smoking data and that
the probability of zero exposure is .1.

Changes in smoking rates over time are modeled as follows.
The probability p; of a change in smoking rate at year t before
interview is defined by .5 = (1 — pt)m, i.e., corresponding to
a .5 probability of a change in smoking rate over 10 years.
If the subject has changed smoking rate, we resample a new
smoking rate from the distribution above.

For w(t), we generate the response based on a logistic
model with covariate 80, w(t)z;(t) and given parameters
Bo and B;. We use several simple weight functions w(t),
including constant, linearly increasing, linearly decreasing,
triangular shape, and trapezoidal shape. Weight functions for
t=1,...,60 are standardized to sum to 60.
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Figure 2. Spline weight function analysis of simulated

data based on monotone decreasing weights (dashed line in
left panel) and triangle-shaped weights (dashed line in right
panel). The estimated spline weight functions (solid lines) are
shown with approximate pointwise normal 95% confidence
intervals. Average knot positions are indicated by circles.

Since the time-weighted exposure Tw(t)z(t) is related
to cumulative exposure, the log odds ratio per pack-year
estimated from the empirical data, log OR = 1.06, is'chosen
for 3.

For case—control data, B is the log odds of being a case
for a never-smoker, ie., at z(t) = 0 for all ¢ = 1,...,60.
Since we have half cases and half controls in our study, we set
Pr(y = 1| %) = .5, which is equivalent to 8y = —3 7. With
a mean cumulative exposure of & = 22.3 pack-years, we get
Bo = —1.29.

Data are simulated using five exposure scenarios repre-
sented by different hypothetical weight functions. For each
scenario, 1000 case—control studies with 500 cases and 500
controls each are generated.

Figure 2 shows the results of the simulation study for two
of the five given hypothetical weight functions (dashed lines).
The estimated spline weight functions (solid lines) follow
closely the given weight functions. Some deviations from the
given weight functions can be observed at the tails, a well-
known weakness of splines.

The approximate normal pointwise 95% confidence
intervals of the estimated spline weight function values
indicate a small simulation variability after 1000 replications.

Measurement error. Exposures many years in the past may
be subject to greater measurement error than more recent
exposures. We assess the sensitivity of the method to time-
dependent error in exposure.

" The previous simulation used exposure profiles z(t), t =
1,...,60. We now include exposure profiles with error (t) =
z(t)e(t), where the time-dependent measurement error e(t) is
uniformly distributed on [1—(1—p)/60, 1+ (1~ p) /60]. The
measurement error distribution is linearly increasing in time
¢ from U[L,1] at interview to Ulp,2 — p] at 60 years before
interview for some chosen fraction p € (0, 1).

For the five weight functions and for a variety of sizes of
error, results were similar to using the error-free profiles, i.e.,
error had little impact on the shape of the weight function.
The simulation suggests that the patterns observed in Figure
2 are not likely a result of measurement error.
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5. Discussion

Our application of a spline function to estimate weights by
increments of exposure can be viewed as a subset of the class
of varying-coefficient models (Hastie and Tibshirani, 1993).
We apply constraints on the functional form to enhance their
epidemiological interpretation. .

In data from a case—control study on lung cancer, we found
that the number of cigarettes smoked within 5-15 years prior
to interview strongly determines an individual’s risk of lung
cancer and that cigarettes smoked more than 20 years before
interview contribute only minimally to risk. The pattern
corresponds to an observed decrease of risk with time since
smoking cessation. A constant weight function is therefore not
consistent with the data, and the use of cumulative exposure
or average exposure rate is not appropriate.

Our choice of time before interview as the time scale
was based on a preliminary analysis of age-specific weight
functions. This analysis revealed a risk pattern for smoking
incompatible with an age-at-exposure effect. The age-specific
weight functions give no indications that exposure received in
youth are especially hazardous compared to exposure received
at older ages.

In a limited simulation study, we showed that increasing
error with time since interview had little impact on the shape
of the weight function. The method thus seems robust against
nondifferential, multiplicative, time-dependent measurement
error that often arises in retrospective collection of exposure
histories. '

An alternative exploratory approach to analyze the expo-
sure-time-response relationship using sliding time windows is
recently proposed and applied to the same data (Hauptmann
et al., 2000). Both methods yield similar conclusions and are
superior to the standard approach of using time since quitting
smoking and duration of smoking. The ability of the standard
approach to detect a decline in risk with increasing time since
smoking cessation depends heavily on the prevalence of ex-
smokers. While this may not be a problem with smoking,
some environmental or occupational exposures are ubiquitous
so that there is no complete cessation of exposure. In addition,
the standard approach does not consider changes in the
number of cigarettes smoked per day except for complete
cessation.

RESUME

Pour é&tudier les effets temporels des cursus d’exposition
sur les maladies, on utilise une fonction de pondération a
Pintérieur d’un modale linéaire généralisé. La forme de cette
fonction, en prenant comme modele une cubique B-spline,
fournit des informations concernant l'impact & différents
moments des accroissements d’exposition sur le risque d’étre
malade. La méthode est évaluée a partir d’une étude de
simulation et est appliquée aux données relatives 4 Phistoire
des consommations de tabac relevées dans une récente
enquéte cas-témoin en Allemagne portant sur les cancers
pulmonaires. :

REFERENCES

Atkinson, K. E. (1989). An Introduction to Numerical
Analysis. New York: John Wiley.

de Boor, C. (1978). A Practical Guide to Splines, Volume 27,
Applied Mathematical Science. New York: Springer.

Doll, R. and Peto, R. (1978). Cigarette smoking and
bronchial carcinoma: Dose and time relationships among
regular smokers and lifelong nonsmokers. Journal of
Epidemiology and Community Health 32, 303-313.

Friedman, J. H. (1991). Multivariate adaptive regression
splines (with discussion). Annals of Statistics 19, 1-67.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized
Additive Models. New York: Chapman and Hall.

Hastie, T. J. and Tibshirani, R. J. (1993). Varying-coeflicient
models. Journal of the Royal Statistical Society, Series
B 55, T57-796.

Hauptmann, M., Lubin, J. H,, Rosenberg, P. S., Wellmann,
J., and Kreienbrock, L. (2000). The use of sliding
time windows for the exploratory analysis of temporal
effects of smoking histories on lung cancer. Statistics in
Medicine 19, 2184-2194.

Kreienbrock, L., Wichmann, H. E., Gerken, M., Heinrich, J.,
Gétze, H-J., Kreuzer, M., and Keller, G. (1992). The
German radon project—Feasibility of methods and first
results. Radiation Protection Dosimetry 45, 643-649.

Lubin, J. H., Blot, W. J., Berrino, F., Flamant, R., Gillis,
C. R., Kunze, M., Schmaehl, D., and Visco, G. (1984).
Modifying risk of developing lung cancer by changing
habits of cigarette smoking. British Medical Journal
288, 1953-1956.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear
Models. New York: Chapman and Hall.

Received March 1999. Rebz’sed February 2000.
Accepted March 2000.

APPENDIX

A cubic spline on [0,7] consists of cubic polynomials on the
m+1 segments defined by m inner knots 0 <t <+ <tm <
7T. Adjacent polynomials are smoothly joined so that first and
second derivatives agree at the knots.

Using a numerically favorable representation of cubic
splines, the space of cubic splines can be spanned with m +4
basis functions B;(t), called B-splines. Therefore, the knot list
has to be augmented by six associated arbitrary slack knots.
Without loss of generality, let t_3 = —3,t_2 = -2,t-1 =—-1
and tpp4o =T + 1, tmy3 = T +2, tymta = T + 3 and denote
to=0and tyq1 =T.

According to Atkinson (1989), the basis functions are
defined by

B ot
B;(t) = (tj+a — t5) Z 1o

)
= T oot (B — 82)

j=-3,...,m,

where (t; — )% = (t; — t)" if t; > t and zero otherwise.
+

Calculations are performed in MATLAB 5.3. The design

matrix of the spline weight function model is created using
the function spcol from DeBoor’s spline toolbox. For X
containing the exposure profiles, 7 containing the matrix
of additional covariates, and knots containing the list of
inner knots between 0 and T, the code is design = [
X * spcol(augknt([O,knots,T] ,4),4,0:T),Z 1. The
function fmincon does the constrained maximization of the
likelihood.
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