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Abstract

Paired data arises in a wide variety of applications where often the underlying distribution of the paired
differences is unknown. When the differences are normally distributed, the t-test is optimum. On the
other hand, if the differences are not normal, the t-test can have substantially less power than the
appropriate optimum test, which depends on the unknown distribution. In textbooks, when the normal-
ity of the differences is questionable, typically the non-parametric Wilcoxon signed rank test is sug-
gested. An adaptive procedure that uses the Shapiro-Wilk test of normality to decide whether to use the
t-test or the Wilcoxon signed rank test has been employed in several studies. Faced with data from
heavy tails, the U.S. Environmental Protection Agency (EPA) introduced another approach: it applies
both the sign and t-tests to the paired differences, the alternative hypothesis is accepted if either test is
significant. This paper investigates the statistical properties of a currently used adaptive test, the EPA’s
method and suggests an alternative technique. The new procedure is easy to use and generally has
higher empirical power, especially when the differences are heavy-tailed, than currently used methods.
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1. Introduction

In many applications paired data control for other relevant variables by using them
in the matching process. Basic textbooks analyze such data by applying the paired
t or the Wilcoxon signed rank tests to the differences. The t-test is optimal when
the differences are normally distributed while the Wilcoxon test is a distribution-
free alternative often recommended when the differences may not be normal. A
natural adaptive procedure would test for normality and use a distribution-free
method when normality is rejected. One such procedure is to first apply the Sha-
piro-Wilk (SW) test (Shapiro and Wilk, 1965) to the differences: if normality is
accepted, the t-test is used; otherwise the Wilcoxon signed rank test is used. This
approach, denoted by STW hereafter, is commonly used in the medical literature
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(Leach et al., 1994; Windus et al., 1997) although sometimes a different test of
normality (Lilliefors, 1967) is employed at the first stage. The STW procedure is
also implemented and illustrated in SAS JMP (Sall et al. 1996).
Differences having long-tailed distributions arise in studies of the environmental

equivalence of fuels. To protect against heavy tailed non-normality, the EPA re-
quires that both the sign and t-tests yield non-significant results when applied to
the differences in order for the null hypothesis to be accepted. After promulgating
this method, the EPA deviated from it in analyzing data comparing the pollution
levels of an alternative fuel to regular gasoline. The auto manufacturers were con-
cerned that a new fuel with higher emission levels might lead to their cars not
being in compliance with the environmental standards and successfully sued the
agency (Gastwirth, 1988; Finkelstein and Levin, 2001).
The use of the SW test as the preliminary one may be useful in other settings

for which adaptive methods have been developed. For example, measures of skew-
ness or tailweight calculated from a sample have been used to select the second
stage test in one and k-sample problems, by Hogg (1974); Randles and Wolfe

(1979); Ruberg (1986); Hill, Padmanabhan and Puri (1988); O’Gorman

(1997); Büning and Kössler (1998). An alternative use of the adaptive approach
occurs in multi-stage experiments. Here an interim analysis is carried out in order
to modify the test or design used at a later stage of the experiment. These meth-
ods are discussed in Bauer and Kohne (1994), Lang, Auterith and Bauer

(2000), Neuhauser (2001) and Wassmer (2000).
Because the Wilcoxon test is nearly as powerful as the t-test on data from the

normal distribution, there is little need to use a preliminary test of normality be-
fore employing it. The Wilcoxon signed rank test, however, does not have high
power when the differences are heavy-tailed. We propose an alternative two-stage
adaptive procedure that takes advantage of the information about the heaviness of
the tails in the selection of a nonparametric-paired test. As a low p-value of the
SW test indicates that the distribution is “far” from normality, the p-value of the
SW test is used to select the second stage test. This paper examines both the
theoretical and small sample properties of the new adaptive method and compares
it to the commonly used STW method and the EPA’s technique. The proposed test
has greater power robustness than either of the other two tests.
Section 2 presents the requisite background information as well as our new

alternative procedure. The large sample theory of the STW and the new tests is
summarized in Section 3. Simulation results are presented in section 4. Several
real world data sets are reanalyzed in Section 5.

2. Description of the procedures

Suppose random variables Z and X describe measurements in two groups and have
a joint distribution function Fðz; xÞ: If Z and X are exchangeable, that is
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Fðz; xÞ ¼ Fðx; zÞ, (e.g., group membership is assigned independently and at ran-
dom) the paired differences Y ¼ Z � X have a symmetric distribution (Randles
and Wolfe 1979, P. 58). Let Y1; Y2; . . . ;Yn be the paired differences with mean D.
We are testing H0: D ¼ 0 vs. Ha: D 6¼ 0. The p-value of the SW test of normality
on Y is utilized to select the non-parametric test to be used to analyze the differ-
ences. This differs from the ordinary application of the SW test to check normality
(e.g. Gan and Koehler, 1990; Ramsey and Ramsey, 1990). We examine the
power characteristics of the SW test for data from several alternative symmetric
distributions in order to determine how it should be used to select the second
stage test. Figure 1 presents graphs of the power of the SW test (5% test) to detect
four alternative distributions (logistic, double exponential, t2 and Cauchy) as a
function of sample size. For samples of 20 or more, the SW test has power over
.85 to distinguish normal data from Cauchy. Samples of at least 60 (310) are
needed to have the same power to distinguish between the normal and t2 (double-
exponential). On the other hand, the power to detect a logistic distribution from a
normal is never over .2 and does not increase for sample sizes between 50 and
300. This result is somewhat surprising and may reflect the slowness of the SW
statistic to approach its limiting distribution. Because it is difficult to distinguish
data from a logistic or double exponential distributions from a normal in a moder-
ate sized sample, we replace the t-test by the Wilcoxon test as the “default” test in
our adaptive method.
When the differences follow a normal distribution, the ordinary t-test is opti-

mum (Lehmann, 1986). It is well known, however, that if the data are not normal,
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Fig. 1. Power of SW (5%) statistic to distinguish Logistic, DE, t2 and Cauchy from a nor-
mal distribution



the t-test need not be the most powerful procedure. Nonparametric and robust
methods were developed with the aim of having relatively high power when the
data comes from non-normal as well as normal populations. Let Y1, . . . , Yn be the
paired differences, Rþ

i be the absolute rank of Yi, i.e. the rank of |Yi| among |Y1|,
. . . , |Yn|. Let dðyÞ be an indicator function taking value of 1 if y is positive and 0
otherwise. For symmetric distributions, most of the commonly used non-para-
metric tests can be written in the form of a linear signed rank test:

T ¼ 1

n

Pn
i¼1

aðRþ
i Þ dðYiÞ with aðiÞ ¼ J

i

nþ 1

� �
; ð1Þ

and JðuÞ is a normalized score function defined on (0,1) satisfying
Ð1
0

JðuÞ du ¼ 0

and
Ð1
0

J2ðuÞ du ¼ 1. When JðuÞ ¼ 2
ffiffiffi
3

p
ðu� 1

2Þ, the test T is the Wilcoxon test

which has asymptotic relative efficiency (ARE) .955 relative to the t-test on nor-
mal data and over the entire family of symmetric distributions its minimum ARE
relative to the t-test is at least .864 (Hodges and Lehman, 1956).
Symmetric distributions are characterized by their tailweight as this reflects the

probability of obtaining a fairly extreme observation. We adopt a minor variant of
a tailweight criterion due to Randles and Hogg (1973);

q ¼
10

Ð1
F�1ð0:95Þ

t dFðtÞ �
ÐF�1ð0:05Þ

�1
t dFðtÞ

" #

Ð1
F�1ð0:5Þ

t dFðtÞ �
ÐF�1ð0:5Þ

�1
t dFðtÞ

:

As the EPA was concerned with the differences from distributions with tails at
least as heavy as the normal this study considers normal, logistic, contaminated
normal, double exponential, t2, Cauchy and slash distributions. The slash distribu-
tion is the ratio of a standard normal over a uniform random variable (Morgenthaler

and Tukey, 1991). This family is well representative of the entire range of possi-
ble symmetric alternatives (Hall and Joiner, 1982; Morgenthaler and Tukey,
1991). The value of q for the light tailed uniform distribution and those used in
our study are: uniform (1.9), normal (2.585), logistic (2.864), contaminated normal
(3.192), double exponential (3.303), t2 (4.359), Cauchy (10), slash (10).
In the situation where the family of alternative distributions is believed to be

limited to Normal, Logistic or the Double exponential, the Wilcoxon signed rank
test is highly correlated with the maximin efficiency robust test (Gastwirth,
1966). Thus, the Wilcoxon test can be used without a preliminary test when it is
reasonable to assume the data come from any one of those three distributions.
Consequently, if the data have moderate tails, the Wilcoxon test is used at the
second stage. On the other hand, if the data indicates that the distribution has
heavy tails, one should use non-parametric tests that have high power for data
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from such distributions at the second stage. After examining the sampling distribu-
tion of the SW test under various distributions and exploring a variety of selection
rules for sample sizes of 10–300, the following 3 linear signed rank tests, with
the score functions specifying them, were chosen for use at the second stage with
score functions:

J1ðuÞ ¼ 2
ffiffiffi
3

p
ðu� 1

2Þ ;

J2ðuÞ ¼
ffiffiffiffiffi
30

p
ðu� 1

2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ðu� 1

2Þ
2

q
;

J3ðuÞ ¼
2 tan ½pðu� 1

2Þ�
1þ tan2 ½pðu� 1

2Þ�
:

Notice that the first linear signed rank test T1 is just the Wilcoxon test, the test
T2 is the most powerful rank test for data from a t-distribution with 2 degrees of
freedom (Gastwirth, 1970), and the third test, T3, is the Cauchy scores test
(Capon, 1961). Within the family of symmetric, unimodal distributions, the lower
the p-value of the SW test, the heavier is the tail of the distribution. Hence, we use
this p-value to choose the second stage test. Let pSW be the p-value of the SW test.
The new adaptive procedure, denoted by S3, is:
If pSW > 0:01, choose the test T1 with score function J1ðuÞ;
If 0:01 � pSW > 0:0001, choose the test T2 with score function J2ðuÞ;
If pSW � 0:0001, choose the test T3 with score function J3ðuÞ.

3. Asymptotic properties of the SW statistic

In order to guarantee the type I error, adaptive methods use a selector statistic that
is independent of the second stage test (see Randles and Wolfe 1979; Hogg,
1974; Büning and Kössler, 1998). The rationale underlying the new adaptive
procedure is that the SW test and linear signed rank test of form (1) are asymptoti-
cally uncorrelated. Thus, one expects their degree of dependence in moderate-
sized samples will be quite small and have little effect on the significance level of
the two-stage procedure. Since the standard condition of independence is not met
a simulation study was carried out. The results indicate that the inflation of the
overall significance level of the adaptive method S3 was very small (less than .002
for samples of size (n) greater than 8) and diminishes as n increases. The main
results are stated here and their derivations are outlined in the appendix.
First, one shows that up to terms of opðn�1=2Þ, the Shapiro-Wilk test statistic,

SW, is equivalent to the statistic

W* ¼ 1

n
~YY 0c

� �2�
s2 ; ð2Þ
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where Y 0 is the vector of i.i.d. observations Y1; . . . ; Yn from distribution F, ~YY 0 is
the vector of the order statistics Y(1) � Y(2) � . . . � Y(n), c is the vector with
ci ¼ F�1ði=ðnþ 1ÞÞ, Fð:Þ is standard normal c.d.f., and s2 ¼ ð1=nÞ

P
ðYi � �YYÞ2.

From Chernoff et al. (1967), W* is seen to be the square of the ratio of the
optimal L-estimator of s for normal data to s, i.e. the numerator and the denomi-
nator of the W* are asymptotically equivalent.
When the data come from a normal distribution, it can be shown that the statis-

tic SW approaches 1 at a rate faster than n�1=2. The precise result is given in
De Wet and Venter (1972) and Leslie et al. (1986). For non-normal data, e.g.,
the underlying density is logistic or double exponential, the following asymptotic
result holds:

Theorem 1: When the sample statistic Y comes from double exponential or
logistic distribution,

ffiffiffi
n

p
ðSW � mÞ ) Nð0; t2Þ for some m and t2. For the double

exponential m ¼ :963 and t2 ¼ .145 and for the logistic m ¼ :991 and t2 ¼ .058.
Since the means of the asymptotic distributions of the SW statistic on data from

the double exponential and logistic distributions are near 1, large samples will be
needed to distinguish those models from the normal one (see Figure 1).
We next discuss the joint asymptotic distribution of the SW statistic and the

signed rank statistics of form (1). The key result, which follows from Hollander

(1968) and Randles and Hogg (1973), is:

Theorem 2: For symmetric distributions the Shapiro-Wilk test is asymptotically
uncorrelated with any signed rank tests of form of (1) as well as with the t-test.
For samples from a normal distribution, we have:

Corollary 3: For samples from normal distribution, the SW and the signed rank
tests of form (1) are asymptotically independent.

4. Power simulation results

In order to compare the power properties of the procedures, samples of size 8, 15,
25, 50 and 300 paired differences were simulated. We considered the following
possible distributions for them: (1) normal, (2) logistic, (3) contaminated normal,
(4) double exponential, (5) t2, (6) Cauchy, and (7) slash. The results for the differ-
ent sample sizes are given in Table 1. For each sample size, empirical power
estimates for the one sample t-test, the signed rank tests optimal for each of the
distributions 1–7, and the adaptive procedures are presented. Two versions of the
STW procedure, denoted by STW 5% and STW 10%, respectively, are examined
depending on whether the 5% or 10% level is used to reject normality. Two-sided
.05 level tests are used at the second stage. In order to ensure that the levels of the
non-adaptive tests were within .002 of .05, randomized versions were used, when
necessary. Notice that in each case, the alternative D was chosen so that the power
of the optimal test for each underlying distribution was near 85%. Since the EPA’s

892 B. Freidlin et al.: On the Use of the Shapiro-Wilk Test

# 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



procedure uses two tests at the same size a, the overall type I error exceeds a
(Gastwirth, 1988). Our simulation indicated that this inflation is substantial.
Thus, we reduced the size of each test so that the overall test had the pre-specified
level (.05). Results for this adjusted version of the EPA’s method are reported.
Table 1 indicates that the new procedure, S3, has better power robustness than

the three other methods (STW 5%, STW 10%, EPA) over the set of distributions for
sample sizes of 50 or less, which are most relevant for the motivating application.
Only for sample size 300 from contaminated normal distribution was the power of
the new procedure noticeably less than the other methods. Such sample sizes of
paired data, however, are not realistic. In almost all other cases, the S3 procedure
had power within a few percentage points of the best performing test for each
distribution. For heavier tailed distributions, its power was noticeably higher than
the Wilcoxon, both STW tests and the EPA procedure. For example, when N ¼ 25,
for Cauchy or slash distributions, the power of S3 exceeded that of either STW test
and the EPA’s test by over 15%. This large increase in power for heavier tailed
distributions cost less than 2% power when the differences are truly normally dis-
tributed. The pattern for the other sample sizes �50 was similar. Since the new
procedure is easy to implement, it should be used in practice.
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Table 1

Empirical size and power estimates

Null
(normal)

Normal Logistic Contam.
Normal*

DE t2 Cauchy Slash Mixture
DE**

N ¼ 8
t-test .050 .856 .865 .856 .860 .826 .653 .660 .849
Normal scores .050 .838 .849 .848 .843 .828 .717 .721 .804
Wilcoxon .050 .837 .850 .850 .845 .831 .719 .724 .796
Sign .050 .671 .721 .769 .747 .799 .767 .770 .555
T2 scores .050 .827 .846 .857 .846 .849 .763 .768 .774
Cauchy scores .050 .711 .760 .823 .790 .857 .856 .855 .627
STW 5% .050 .856 .864 .859 .857 .839 .722 .728 .843
STW 10% .051 .855 .863 .859 .855 .837 .722 .727 .835
S3 .051 .838 .852 .857 .849 .855 .806 .807 .797
EPA procedure .050 .837 .854 .857 .853 .844 .735 .740 .826

N ¼ 15
t-test .050 .856 .845 .792 .793 .655 .357 .406 .835
Normal scores .050 .847 .841 .814 .799 .736 .585 .633 .834
Wilcoxon .051 .842 .853 .846 .829 .786 .650 .700 .847
Sign .049 .678 .742 .750 .783 .786 .771 .798 .683
T2 scores .050 .793 .836 .852 .849 .846 .786 .824 .823
Cauchy scores .050 .654 .735 .765 .796 .823 .845 865 .701
STW 5% .051 .856 .852 .837 .818 .771 .641 .689 .849
STW 10% .051 .855 .854 .841 .821 .776 .645 .693 .850
S3 .052 .845 .856 .856 .840 .828 .801 .846 .850
EPA procedure .050 .831 .840 .825 .824 .787 .715 .748 .825
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Table 1 (Continued)

Null
(normal)

Normal Logistic Contam.
Normal*

DE t2 Cauchy Slash Mixture
DE**

N ¼ 25
t-test .050 .853 .836 .767 .749 .572 .219 .263 .798
Normal scores .050 .847 .843 .822 .785 .728 .554 .602 .832
Wilcoxon .050 .837 .854 .850 .825 .793 .659 .703 .856
Sign .050 .679 .749 .746 .804 .790 .781 .783 .749
T2 scores .050 .768 .825 .840 .848 .850 .801 .829 .848
Cauchy scores .050 .603 .708 .724 .802 .816 .850 .852 .746
STW 5% .051 .852 .848 .838 .799 .773 .652 .696 .840
STW 10% .051 .851 .850 .843 .807 .779 .654 .698 .845
S3 .051 .837 .855 .852 .834 .830 .832 .841 .856
EPA procedure .050 .831 .832 .805 .805 .755 .687 .696 .817

N ¼ 50
t-test .050 .859 .850 .751 .756 .482 .112 .150 .722
Normal scores .049 .854 .861 .827 .814 .715 .520 .598 .798
Wilcoxon .049 .842 .874 .854 .860 .790 .641 .713 .838
Sign .050 .677 .766 .735 .855 .777 .761 .769 .775
T2 scores .050 .752 .837 .830 .884 .845 .792 .836 .847
Cauchy scores .050 .566 .708 .688 .852 .805 .841 .847 .777
STW 5% .050 .857 .861 .838 .824 .774 .641 .711 .809
STW 10% .051 .856 .864 .844 .835 .779 .641 .712 .818
S3 .051 .842 .872 .834 .868 .820 .838 .847 .836
EPA procedure .050 .827 .849 .799 .859 .761 .716 .725 .803

N ¼ 300
t-test .050 .848 .815 .732 .633 .354 .035 .043 .639
Normal scores .050 .847 .832 .825 .731 .721 .512 .594 .774
Wilcoxon .050 .831 .847 .853 .794 .805 .650 .723 .832
Sign .049 .662 .732 .727 .845 .788 .772 .762 .852
T2 scores .050 .713 .796 .814 .831 .857 .807 .843 .861
Cauchy scores .050 .509 .649 .647 .815 .813 .853 .844 .836
STW 5% .050 ..846 .822 .845 .778 .805 .650 .723 .831
STW 10% .050 .845 .824 .847 .783 .805 .650 .723 .831
S3 .050 .829 .843 .722 .819 .813 .853 .844 .841
EPA procedure .050 .815 .814 .777 .828 .756 .716 .708 .838

* Contaminated normal: N (mean ¼ 0 SD ¼ 1) with probability .9 and N (mean ¼ 0, SD ¼ 3) with
probability .1.

** Mixture of double exponentials: DE(mean ¼ 0) with probability .75 and DE(mean ¼ D) with prob-
ability .25

Values of parameter D for each of the alternative distributions for n ¼ 8, 15, 25, 50, 300.
Normal: 1.25, 0.84, 0.627, 0.438, 0.173
Logistic: 2.31, 1.50, 1.11, 0.785, 0.30
Contaminated Normal : 1.63, 1.00, 0.735, 0.505, 0.20
Double exponential: 1.80, 1.508, 0.765, 0.538, 0.188
t2: 2.46, 1.25, 0.878, 0.578, 0.228
Cauchy: 4.10, 1.65, 1.073, 0.661, 0.25
Slash: 5.30, 2.40, 1.57, 1.02, 0.391
Mixture of double exponentials: 5.4, 2.68, 1.8, 1.1, 0.4



At the suggestion of a referee an asymmetric alternative was also explored. We
assumed a mixture of double exponential with mean 0 and another double expo-
nential with mean D > 0 (with probabilities .75 and .25, respectively). In the moti-
vating example this corresponds to a situation where the new fuel is equivalent to
the old value for a sizeable fraction of cars but produces more pollution for other
type of cars. The results in the last column of Table 1 indicate that the adaptive
procedures perform well.

5. Examples

To illustrate the comparative performance of the new procedure (S3), we use it
and other methods to reanalyze three data sets. We applied the EPA’s original
procedure so it has an overall level exceeding .05, which should give it a power
advantage over the STW and S3 methods. The first data set refers to paired electri-
cal measurements on 24 wiring boards, each board was measured right after sol-
dering and after three weeks of exposure to a high temperature environment
(Iman, 1995). These data are used in the SAS JMP guidebook (Sall et al. 1996).
The results of the adaptive and non-adaptive tests are reported in the first column
of Table 2. Notice that normality is clearly rejected ðpSW < :01Þ: While both adap-
tive procedures reject the null hypothesis, the p-value (.0008) obtained using the
new procedure is more significant than the one (.012) from STW. The p-value of
S3 equals that yielded by the T2 test. This is sensible as the S3 procedure selects
that test after rejecting normality. It should be noted that the t-test does not reject
the null hypothesis while the normal scores test (Chernoff and Savage, 1958)
just barely rejects it at the .05 level. The EPA’s procedure will also reject the null
hypothesis as the sign test is significant.
The second data set consists of the differences between the emission levels of

16 cars when they were driven with two different fuels. The data arose in a law
case questioning the EPA’s decision that they were equivalent. The case and the
data set are described in Gastwirth (1988, p. 611) and Finkelstein and Levin

(2001, p. 187). The results of several tests are given in the second column of
Table 2. As the SW test rejects normality at the .05 level but not at the .01 level,
both S3 and the STW use the Wilcoxon and yield the same p-value. This may be a
function of the small sample size, which did not yield a sufficiently low p-value
of the SW test to have S3 applying the T2 or Cauchy scores test to the data. These
tests gave even more significant results. The EPA’s method also detected a signifi-
cant difference. But the EPA did not follow its own result, however, triggering the
lawsuit.
The third example deals with differences in corn yields from sprayed vs. un-

sprayed strips from 14 farms in Bone County, Iowa (Snedecor and Cochran,
p. 71 1989). The test results are presented in the last column of Table 2. The
differences clearly are not normally distributed so both STW and S3 chose a non-
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parametric test and found a significant difference. As S3 select the T2 scores test,
it yields a lower p-value than STW, which applies the Wilcoxon test at the second
stage. Notice that the EPA’s method did not detect this difference as the p-value of
both the t and sign tests exceeded .10.

6. Discussion

Although the Wilcoxon test has high relative efficiency on normal data, it is not
very efficient, relative to the optimum tests, on heavier tailed distributions, e.g., t2,
and Cauchy. Thus, the STW procedure, which uses the Wilcoxon test when the
SW test rejects normality, does not have high power when the differences are
heavy tailed. When normal or near normal data is anticipated, the Wilcoxon test
provides a method with good power properties (Lehmann, 1986). When the differ-
ences may come from a family of symmetric distributions that includes both mod-
erate and heavy tailed ones, an adaptive procedure, such as S3 that can select an
optimal rank test for a heavy tailed distribution is preferable. The results on both
simulated and actual data demonstrate that one can obtain an adaptive test that has
high power relative to the best test for a reasonably large class of moderate to
heavy tailed symmetric distributions.
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Table 2

Test results for the three data sets

Test p-value

SAS JMP data
0.05, 0.06, –0.06, –0.11,
–0.16, –0.17, –0.3, –0.3,
–0.31, –0.54, –0.74,
–0.82, –0.83, 0.83,
–0.88, –0.9, –1.42,
–1.45, –1.67, –1.82,
–1.92, –2.66, 2.8, 2.92
tailweight ¼ 3.204

EPA/Petro. Data
0.0, –0.015, 0.02,
–0.029, 0.043, 0.045,
0.06, 0.09, 0.18, 0.18,
0.188, 0.19, 0.219, 0.231,
0.343, –0.4

tailweight ¼ 3.133

Boone County Data
– .0.5, –0.9, 1.3, –1.5,
1.6, 1.7, 2.3, 2.5, 2.8,
3.0, 4.4, 6.8, –7.7, 22.0

tailweight ¼ 4.1747

Shapiro-Wilk .0076 .0258 .0018
t-test .1107 .0626 .1429
Normal score .0458 .0511 .0553
Wilcoxon .0123 .0175 .0419
Sign .0066 .0352 .1796
T2 scores .0008 .0030 .0234
Cauchy scores .0002 .0028 .0266
STW* .0123 .0175 .0419
S3 .0008 .0175 .0234
EPA procedure .0066 .0352 .1429

* both STW 5% and STW 10% have identical p-values and are reported in the same row
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Appendix

Let m and V be the expected value and covariance matrix of the order statistics
from a standard normal distribution and g ¼ V�1m. The Shapiro-Wilk statistic
(SW) is:

SW ¼ ð ~YY 0gÞ2

ns2 kgk2
¼ kgk2

4n

" #�1
1

2n
~YY 0g

� �2

s2
¼ anW*þ bn : ðA:1Þ

with an ¼
kgk2

4n

" #�1

; W* ¼ 1

n
~YY 0c

� �2�
s2 and bn ¼ an

1

2n
~YY 0g

� �2

� 1

n
~YY 0c

� �2

s2

2
6664

3
7775:

First, we show that up to terms of opðn�1=2Þ, the SW is equivalent to the statis-

tic W*. Using the results
kmk2

n
¼ 1þ oðn�1=2Þ, kg� 2mk2 ¼ Oððlog nÞ�1Þ (lem-

mas iii, iv and equation (1) of Leslie, Stephens and Fotopoulus, 1986) and
km� ck2 ¼ Oððlog nÞ�1Þ (Verrill, 1987), we get:

kgk2

4n
¼ 1þ oðn�1=2Þ ; jjcjj2

n
¼ 1þ oðn�1=2Þ

and kg� 2ck2 ¼ Oððlog nÞ�1Þ : ðA:2Þ
For distributions with finite variance, the Law of Large Number implies

1

n
jj ~YY jj2

¼ 1

n

P
Y2
ðiÞ ! m2, for some m2. So,

1ffiffiffi
n

p jj ~YY jj ! ffiffiffiffiffi
m2

p
.

1

2n
~YY 0g� 1

n
~YY 0c

����
���� ¼ 1

2n
j ~YY 0ðg� 2cÞj � 1

2
ffiffiffi
n

p 1ffiffiffi
n

p jj ~YY jj
� �

kg� 2ck ¼ oðn�1=2Þ :

ðA:3Þ
Furthermore, Theorem 3 of Chernoff et al. (1967) implies that when sample

comes from double exponential or logistic distributions, the L-statistic
1

n
~YY 0c con-
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verges to some constant, so does the
1

2n
~YY 0g, according to (A.3). From (A.2) and

(A.3), we have:

an ¼ 1þ oðn�1=2Þ and bn ¼ oðn�1=2Þ .
Hence, the statistics SW and W* have the same

ffiffiffi
n

p
–– asymptotic distribution.

Proof of Theorem 1: It is sufficient to show that
ffiffiffi
n

p
ðW*� mÞ ) Nð0; t2Þ. Let

T1 ¼ ð1=nÞ ~YY 0c, T2 ¼ ð1=nÞ
P

Y2
ðiÞ and T3 ¼ �YY . Then W* can be written as

W* ¼

1

n
~YY 0c

� �2

1

n

P
Y2
ðiÞ � �YY2

¼ T2
1

T2 � T2
3

:

Because T1 and T2 are linear combinations of functions of order statistics, Theo-
rem 3 of Chernoff et al. (1967) can be used to show that when the sample comes
from a double exponential or logistic distributions,

ffiffiffi
n

p
ðTi � miÞ=si ) Nð0; 1Þ;

i ¼ 1,2. Statistic T3 is the sample mean and by the central limit theoremffiffiffi
n

p
ðT3 � 0Þ=s3 ) Nð0; 1Þ. Using the delta-method and the Remark 9 of Cher-

noff et al. (1967), it can be shown that
ffiffiffi
n

p
ðW*� mÞ ) Nð0; t2Þ with m ¼ m21

m2
and

t2 ¼ 4m21s
2
1

m22
þ m41s

2
2

m22
� 4

m31
m32

cov ðT1; T2Þ.

Proof of Theorem 2: It is sufficient to show that cov ðSW ; TÞ ¼ 0 asymptoti-
cally, where T refers to a signed rank test of form (1) or the t-test. The proof
follows along those outlined in Hollander (1968) and Randles and Hogg

(1973).
Let Z ¼ ðZ1; . . . ; ZnÞ0; be an i.i.d. sample, independent of Y, where Z ¼ 0 with

probability 1. Then a signed rank test of Y can be written as: TðYÞ ¼ TðY ; ZÞ
¼

P
dðYi � ZiÞ aðRþ

i Þ where dðxÞ ¼ 1 if x > 0;dðxÞ ¼ 0 if x � 0, Ri
+ is the rank

of jYi � Zij, and a(i) is the centered score function. Obvious, for any scale
b ¼ ðb; b; . . . bÞ0, TðY þ b; Z þ bÞ ¼ TðY ; ZÞ: The fact that score function aðiÞ is
centered implies that asymptotically Tð�Y ;�ZÞ ¼ �TðY ; ZÞ: In other words,
asymptotically TðYÞ ¼ TðY ; ZÞ is odd and translation invariant. The t-test statistic

of Y can be written as: tðYÞ ¼ tðY ; ZÞ ¼
�YY � �ZZ

ns=ððn� 1Þ
ffiffiffi
n

p
Þ. Since s is even and

translation invariant, tðYÞ ¼ tðY ; ZÞ is also odd and translation invariant.

Recall that the g ¼ V�1m: Since standard normal distribution is symmetric,
gi ¼ �gnþ1�i. Consequently, for any scale b ¼ ðb; b; . . . ; bÞ0,
ð ~YY þ bÞ0g ¼ ~YY 0gþ bg ¼ ~YY 0g: Furthermore, let ð� ~YYÞ ¼ ðð�YÞð1Þ; . . . ð�YÞðnÞÞ

0 be
the ordered statistics of –Y. Then

ð� ~YYÞ0g ¼
Pn
i¼1

ð�YÞðiÞgi ¼
Pn
i¼1

ð�Yðnþ1�iÞÞð�gnþ1�iÞ ¼ ~YY 0g :
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Which means that ð ~YY 0gÞ2is even and translation invariant, so does

SWðYÞ ¼ SWðY ; ZÞ ¼ ð ~YY 0gÞ2

ns2kgk2
:

Obviously, the joint distribution of Y and Z is symmetric about ð0; 0Þ0. Accord-
ing to Theorem 1 of Hollander (1968), asymptotically, Cov ðSW ; TÞ ¼ 0:

Proof of Corollary 3: When the distribution is normal, SW converges to 1 at a
rate faster than

ffiffiffi
n

p
(e.g. Leslie et al., 1986). Hence, by Slutsky’s Theorem,ffiffiffi

n
p

ðSW � 1Þ ! 0 in probability.
It is well known that for any signed rank test T,

ffiffiffi
n

p
ðT � mÞ ) Nð0; s2Þ: So,

for any constant a and b, using the Slutsky’s Theorem again, we have:

a
ffiffiffi
n

p
ðSW � 1Þ þ b

ffiffiffi
n

p
ðT � mÞ ) Nð0; b2s2Þ ;

which means that
ffiffiffi
n

p
ðSW � 1Þ and

ffiffiffi
n

p
ðT � mÞ are asymptotically joint normal.

Theorem 1 implies that
ffiffiffi
n

p
ðSW � 1Þ and

ffiffiffi
n

p
ðT � mÞ are also asymptotically un-

correlated. Consequently, SW and T are
ffiffiffi
n

p
–– asymptotically independent.
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