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One can obtain population-based estimates of the penetrance of a measurable
mutation from cohort studies, from population-based case-control studies, and
from genotyped-proband designs (GPD). In a GPD, we assume that representa-
tive individuals (probands) agree to be genotyped, and one then obtains informa-
tion on the phenotypes of first-degree relatives. We also consider an extension of
the GPD in which a relative is genotyped (GPDR design). In this paper, we give
methods and tables for determining sample sizes needed to achieve desired pre-
cision for penetrance estimates from such studies. We emphasize dichotomous
phenotypes, but methods for survival data are also given. In an example based
on the BRCA1 gene and parameters given by Claus et al. [(1991) Am J Hum
Genet 48:232–242], we find that similar large numbers of families need to be
studied using the cohort, case-control, and GPD designs if the allele frequency is
known, though the GPDR design requires fewer families, and, if one can study
mainly probands with disease, the GPD design also requires fewer families. If
the allele frequency is not known, somewhat larger sample sizes are required.
Surprisingly, studies with mixtures of families of affected and non-affected
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probands can sometimes be more efficient than studies based exclusively on af-
fected probands when the allele frequency is unknown. We discuss the feasibil-
ity and validity of these designs and point out that GPD and GPDR designs are
more susceptible to a bias that results when the tendency for an individual to
volunteer to be a proband or to be a subject in a cohort or case-control study
depends on the phenotypes of his or her relatives.  Genet. Epidemiol. 16:15–39,
1999. Published 1999 by Wiley-Liss, Inc.
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INTRODUCTION

Once a genetic mutation has been identified as affecting the risk of disease and
the mutated gene has been isolated and techniques have been developed to detect it,
several epidemiologic designs are available for estimating the risk of disease among
carriers of the mutation. The dominant breast cancer genes BRCA1 and BRCA2
were identified by studying families with many affected women (“multiplex pedi-
grees”). Estimates of the lifetime risk (“penetrance”) of developing disease in muta-
tion carriers from such families are high. For example, Easton et al. [1995] used
linkage methods (rather than direct BRCA1 assays) to estimate that 85% of BRCA1
carriers would develop breast cancer by age 70. Their statistical methods took into
account ascertainment of highly affected families by conditioning on the numbers of
affected members in the pedigree. Nonetheless, some observers have questioned the
applicability of these high penetrance estimates to the general population because
these specifically selected pedigrees might have other genetic or environmental ex-
posures that enhance the risk from BRCA1 and BRCA2 mutations. Indeed, a recent
estimate of penetrance in a less selected population was only 56% [Struewing et al.,
1997]. For this reason, there is a need for population-based studies to estimate the
penetrance in the general population.

Strueweing et al. [1997] recently reported on one such population-based design,
which Wacholder et al. [1997], who developed the analytic methods used, called the
kin-cohort design. Struewing et al. [1997] asked Ashkenazi Jews living in the Wash-
ington, D.C., area to volunteer for genotyping of the BRCA1 and BRCA2 genes.
This population was selected because the prevalences of certain specific mutations
were known to be elevated among Ashkenazi Jews. They then used information on
the breast cancer history of relatives of these genotyped volunteers (the probands) to
estimate the distributions of time to breast cancer among those with and without
mutations. Their calculation of mutation-specific cumulative risk was based on the
idea that the distribution of risk among relatives of a proband was a mixture over the
unknown genotypes of the relatives of the gene-specific risk distributions, and the
mixing probabilities for relatives could be calculated from the known genotype of
the proband. Further details concerning the design and analytical approach for this
study are given by Wacholder et al. [1997].

We use the term genotyped-proband design (GPD) in this paper, rather than
kin-cohort design, to emphasize that the probands are genotyped and are selected at
random, conditional on disease status. As in Struewing et al. [1997], we rely on the
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family histories of first-degree relatives to provide information on penetrance, but,
in addition, we allow information from genotyping the proband to contribute to the
information on penetrance. Others such as Claus et al. [1991] and Whittemore et al.
[1997] have used population-based samples of affected and unaffected probands and
the family histories of their near relatives to estimate the penetrance of breast cancer,
but their probands were not genotyped.

An ideal GPD would proceed by obtaining a random sample of N individuals
with disease (case probands) and a random sample of M individuals without disease
(control probands), genotyping the probands, and determining the cancer history (phe-
notype) of relatives. A variant on this design, GPDR, would be to genotype one or
more relatives in addition to the proband. In this paper, we describe sample size
calculations for GPD and GPDR needed to estimate the penetrance of a dichotomous
trait with required precision, and we evaluate what ratios of N to M are most effi-
cient. We outline similar calculations for estimating time-to-disease distributions with
required precision.

The GPD and GPDR designs take advantage of the fact that the phenotypes of
relatives of the probands can be obtained by reviewing their medical histories. Popu-
lation-based case-control designs can also take advantage of retrospective evaluation
of risk and genotype and yield estimates of gene-specific risk. We present an ex-
ample that suggests that case-control designs may have comparable efficiency to the
GPD design, and the case-control design can be more robust to certain selection
biases than the GPD design. We also briefly consider the efficiency of a cohort de-
sign and its robustness to selection bias. A historical cohort study might be feasible,
for example, if stored biological specimens permitted the genotyping of cohort mem-
bers, some of whom may already have died at the time of the study.

We emphasize rare dominant alleles in our discussion, because several such
genes have been identified as major cancer susceptibility genes, but the methods are
easily extended to recessive or codominant autosomal genes.

The purpose of this paper is to define the required sample sizes and strengths
and weaknesses of the cohort, case-control, GPD, and GPDR designs for esti-
mating the penetrance of the mutant alleles with specified precision. We empha-
size the binary case, though some results are also presented for time-to-disease
data. Throughout we assume a simple genetic model in which the probability
distribution of the phenotype is determined solely by the genotype. In particular,
we assume that phenotypes within a pedigree are conditionally independent given
corresponding genotypes. This commonly made assumption, while perhaps ad-
equate for design considerations, would need to be examined critically when ana-
lyzing such data.

METHODS AND NOTATION
Binary Data

We suppose that each individual in the population has a genotype g = 1 or 0
according to whether the mutant allele is present or absent, as is appropriate for an
autosomal dominant model. Assuming Mendelian genetics and Hardy-Weinberg equi-
librium, we have P(g = 1) = q2 + 2q(1 – q) and P(g = 0) = (1 – q)2, where q is the
proportion of mutant alleles in the population. The binary outcomes, Y = 1 if dis-
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eased and Y = 0 otherwise, define the penetrances φ1 = P(Y = 1|g = 1) for carriers of
the dominant mutation and φ0 = P(Y = 1|g = 0) for non-carriers.

Cohort Design

To estimate φ1 with required precision using the cohort design, we need to ob-
tain a random sample of n1 subjects with g = 1, where n1 is large enough to make the
width of the 95% confidence interval, 2∆, acceptably small. In particular, we require

1.96 {φ1(1 – φ1)/n1}
1/2

 = ∆. (2.1)

The problem is that in order to obtain n1 subjects with g = 1, a very large number of
members of the general population will need to be genotyped. Indeed, the expected
number of required genotypes is N = n1/P(g = 1), which can be very large for rare
mutations.

Case-Control Design

If P(Y = 1) is known in the population, as in a population-based case-control
study or in the study of a disease, such as breast cancer, for which population-based
disease registries are available, it is possible to estimate φ1 from Bayes theorem [Corn-
field, 1951] as

φ1 = P(Y = 1)P(g = 1|Y = 1){P(Y = 1)P(g = 1|Y = 1) + P(Y = 0)P(g =1|Y = 0)}–1. (2.2)

The quantities P(g = 1|Y = 1) and P(g = 1|Y = 0) can be estimated by genotyping
representative random samples of n cases and m controls, respectively, allowing com-
putation of the estimate φ1 from equation (2.2). Assuming P(Y = 1) is known, the
delta method [Rao, 1965, pp 319–325] yields the variance formula

Var(φ^ 1) = {(1 – ε1)/nε1 + (1 – ε0)/mε0}{ φ1(1 – φ1)}
2, (2.3)

where ε1 = P(g = 1|Y = 1) and ε0 = P(g = 1|Y = 0). Because ε0 is usually much
smaller than ε1, Var (φ^ 1) can be minimized for a given total number of genotypes, n +
m, by sampling more controls than cases. Indeed, the optimal allocation ratio is the
square root of the odds ratio,

m/n = {(ε1/ε0) (1 – ε0)/(1 – ε1)}
½. (2.4)

From equations (2.3) and (2.4), we can calculate the minimum number of genotypes
n + m needed to achieve required precision, namely a 95% confidence interval on φ1

of width 2∆. Analogous formulas hold for estimating φ0.
We note that case-control data can also be used to estimate φ1 and φ0 provided

the allele frequency q is known, even if P(Y = 1) is not known. This result follows
from P(Y = 1) = π1φ1 + π0φ0, where π1 = P(g = 1) = 1 – π0. Indeed, solving the two
equations φ1 = P(Y = 1)ε1/π1 and (1 – φ1) = P(Y = 0) ε0/π1 yields

φ1 = ε1(π1 – ε0)/π1(ε1 – ε0). (2.5)
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Genotyped Proband Design (GPD)

For design purposes we consider pedigrees consisting of a proband to be
genotyped and up to two first-degree relatives whose medical histories will be ascer-
tained. The data thus consist of Y0, g0, Y1, and Y2, where the subscript zero denotes
the proband and subscripts 1 and 2 correspond to relatives. For example, consider a
study of breast cancer in the pedigree in Figure 1. The proband is genotyped, and the
breast cancer histories of her mother (Y1) and sister (Y2) are ascertained. Her father
is not phenotyped because this disease has such low penetrance in men. Nonetheless,
in computing the distributions of genotypes in the pedigree, conditional on g0, the
possible genotypes of the father must be considered.

Assuming no inbreeding, non-assortative mating, Hardy-Weinberg equilibrium,
and autosomal dominant inheritance, one can calculate the conditional distribution
of genotypes P(g1,g2|g0;q). We do this for pedigrees such as in Figure 1 by exhaus-
tively enumerating the 34 = 81 joint genotypes for the proband, two female relatives,
and, in this case, the father. For example, letting AA, Aa, and aa denote homozygous

Fig. 1. Family of a female (circle) genotyped-proband with genotype g0 and phenotype Y0. Pheno-
typic information on her mother (Y1) and sister (Y2) are also available.
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carrier, heterozygote, and non-carrier, respectively, the probability that the father,
mother, sister, and proband, respectively, have genotypes (aa), (Aa), (aa), and (Aa) is
(1 – q)2 × 2q(1 – q) × (½) × (½). Because events such as g0 = 1 can be expressed in
terms of events AA, Aa, and aa, the required conditional distribution P(g1,g2|g0;q)
can be calculated numerically as a function of q.

The likelihood contribution from a single family can be written as L =
L(Y1,Y2,g0|Y0) = L1L2, where

L P g Y P g Yg g
1 0 0 0 0

11 00 0= = = −( | ) ( | ) (2.6)

is the contribution to the likelihood from genotyping the proband, and
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is the contribution from the phenotypes of the relatives. We are assuming in equation
(2.7) that the responses of the relatives are conditionally independent given their
genotypes. Note that no adjustments are needed for ascertainment bias, beyond what is
implicit in this likelihood, because the ideal GPD is population-based, and probands are
selected at random from among persons with (Y0 = 1) or without disease (Y0 = 0).

The quantities in equation (2.6) depend on the penetrances φ1, φ0, and on q
through the relationships

ε1 = P(g0 = 1|Y0 = 1) = π1φ1/(π1φ1 + π0φ0) (2.8)

and

ε0 = P(g0 = 1|Y0 = 0) = π1(1 – φ1)/{ π1(1 – φ1) + π0(1 – φ0)}. (2.9)

The quantities P(Yi = 1|gi) in equation (2.7) are φ1 or φ0 according as gi = 1 or 0.
The Fisher information matrix is obtained as the expectation of minus the cross

derivatives of log(L) with respect to φ1 and φ0, if q is assumed known, and with
respect to φ1, φ0, and q otherwise (Appendix). Inverting the Fisher information ma-
trix, I, yields I11, the upper left-hand element of the inverse of I, which is asymptoti-
cally the variance of the maximum likelihood estimate of φ1. Hence the number of
pedigrees required to achieve a confidence interval of φ1 of width 2∆ can be com-
puted. Details for writing the likelihood based on a cross-classification of families
on g0, Y1, Y2, are given in the Appendix, where results for families with a single
relative are also given. The results and methods in the Appendix are valid for any
type of relative(s), such as two sisters of the proband, provided the appropriate con-
ditional distributions P(g1,g2|g0;q) are used.

If N case probands and M control probands are studied, we can represent the
total information as

I = (N+M){ ρI(case) + (1 – ρ)I(control)}, (2.10)
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where ρ = N/(N + M), I (case) is the information matrix from a single family with
case proband and I (control) is the information matrix from a single family with
control proband. To determine the most efficient fraction of families with case
probands, we minimize the asymptotic variance of φ1, the appropriate element in the
inverse of equation (2.10), with respect to ρ for 0 ≤ ρ ≤ 1. For fixed ρ, the standard
deviation, SD(φ1), represents the precision per family studied in a mixed set of fami-
lies with mixing proportion ρ. We use the notation GPD(r,ρ) to represent a study of
families with mixing proportion ρ in which each family yields phenotypes from r
relatives of the proband.

The results in this paper will assume that the relative is the mother of the proband
for GPD(1,ρ) designs, and, for GPD (2,ρ) designs, we assume that the relatives of
the proband are the mother and sister. Other types of first-degree relatives yield al-
most identical results, however, because P(g1,g2|g0) depends very little on the types
of first-degree relatives with small allele frequencies.

Genotyped Proband Design With Supplemental Genotyping
of Relatives (GPDR)

To explore the gains in information from genotyping relatives, we first consider
the case of a family with a single relative in which both the proband and the relative
are genotyped. The contribution to the likelihood from a single family of a case
proband is L (case proband) =

ε ε φ φ φ φ1 1
1

1 0 1 1 0
1

1 0 0
10 0 1 1 1 11 1 1 0 1g g Y Y Y YP g g q I g I g( ) ( | ; ){ ( ) ( ) ( ) ( ) },− = − + = −− − − (2.11)

where I(·) is an indicator function taking value 1 when the argument is true and zero
otherwise. A similar expression is obtained for control proband families except ε0

replaces ε1 in equation (2.11). Equation (2.11) differs from the likelihood for the
GPD design in two respects. First, there is a contribution, P(g1|g0;q), reflecting the
genotyping of the relative. Second, the term in curly brackets in (2.11) is not a mixed
distribution because only one of the two conditions g1 = 1 and g0 = 0 is true.

An alternative strategy is to genotype the relative only if the proband is a car-
rier. The likelihood for this strategy for a case proband is

L (case proband) = εg0
1 (1–ε1)

1–g0

× [I(g0 = 1)P(g1|g0 = 1;q){ I(g1 =1)φY1
1(1– φ1)

1–Y1+I(g1 = 0)φ0
Y1(1– φ0)

1–Y1}

+I(g0 = 0)P(Y1 = 1|g0 = 0)Y1P(Y1 = 0|g0 = 0)1–Y1]. (2.12)

The quantity P(Y1 = 1|g0 = 0) = φ1P(g1 = 1|g0 = 0) + φ0P(g1 = 0|g0 = 0).
For either strategy, the Fisher information is obtained by numerical differentia-

tion after categorizing families according to g0, g1, and Y1 (see Appendix).
As in equation (2.10), we study mixtures of families in which a proportion ρ

have case probands, and we let GPDR(ρ) denote a design with mixing propor-
tion ρ. In this paper, we only analyze GPDR designs with one relative, but we
consider two strategies: always genotyping the relative or only genotyping the
relative when g0 = 1.
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We assume that the relative in the GPDR design is the mother of the proband.

GPD Survival Data

Suppose the cumulative risk to age t of the disease of interest is

F t S t tg g g g
g( ) ( ) [ exp{ ( ) }]= − = − −1 1φ λ α (2.13)

for genotypes g = 1 (carriers) or g = 0 (non-carriers). The family (2.13) is quite
flexible and corresponds to an improper Weibull distribution with lifetime risk (pene-
trance) φg as t→∞.

Consider a proband sampled at a calendar time C, and let a0 and a1 be the re-
spective times from dates of birth to time C of the proband and a single relative,
whom we assume to be the mother. Let d0 and d1 be the ages at death of the proband
and relative. Note that d0 > a0 because the proband must be alive to be sampled, but
d1 < a1 is possible. Let v0 and v1 be the ages when the disease of interest is incident
in the proband and relative. Let ti = min (ai,di,vi) and let δi = 1 if ti = vi and 0 if ti < vi

for I = 0,1.
Conditional on g0, and assuming that other causes of death (and age) are inde-

pendent of g0, the contribution to the likelihood from the relative is

Σg g gS t h t P g g q G t
1 1 1

1
1 1 1 0 1( ){ ( )} ( | ; ) ( ),δ (2.14)

where the hazard is

h t t t S tg g g g g g
g g g( ) exp{ ( ) } / ( ),= −−φ α λ λα α α1 (2.15)

and where G(t) is the probability of surviving all non-breast cancer causes of death
up to time t. Because G is assumed not to depend on g1, it does not affect estimation
of penetrance through equation (2.14) and could be omitted.

Now consider a control proband with phenotype Y0 = (t0 = a0, δ0 = 0). To com-
pute the contribution to the likelihood from genotyping the proband, namely

P g Y P g Yg g( | ) ( | ) ,0 0 0 0
11 00 0= = − (2.16)

we note that
P g Y P g G t S tg( , ) ( ) ( ) ( ).0 0 0 0 00

= (2.17)

Here G (·) is assumed to be independent of genotype, g0, and Sg0
 can be estimated

from cause-specific disease incidence rates in the presence of competing causes of
death without the independence assumption [Prentice et al., 1978]. It follows that

P g Y t P g S t P g S t P g S t{ | ( , )} ( ) ( ){ ( ) ( ) ( ) ( )} .0 0 0 0 0 1 0 0 1 0 0 0 0
11 0 1 1 0= = = = = = + = −δ (2.18)

Alternatively, a proband may have the disease of interest at an earlier age t0 = v0 but
survive to age a0. In this case
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P g Y P g G t S t h t J a t tg g( , ) ( ) ( ) ( ) ( ) ( ; ),0 0 0 0 0 0 0 0 00 0
= − (2.19)

where J(u;v) is the probability that a person developing the disease of interest at age
v will survive to age v+u. Note that both G and J are assumed to be independent of
g0. The latter assumption may not always hold. From equation (2.19), we obtain

P{g0 = 1|Y0 = (t0,δ0 = 1)} = P(g0 = 1)S1(t0)h1(t0){P(g0 = 1)S1(t0)h1(t0)

+ P(g0 = 0)S0(t0)h0(t0)}
–1. (2.20)

For each family, the likelihood is obtained by computing P(g0|Y0) from (2.18) or
(2.20), and then multiplying (2.16) by (2.14). We denote the logarithm of this prod-
uct by l(φ1,φ0,λ1,λ0,α1,α0;g0,Y0,Y1). We can estimate the Fisher information, and hence
the covariance of the parameter estimates, by obtaining a large random sample of
data (g0,Y0,Y1), computing l

–
, the average value of l in this sample, and obtaining the

Hession of l
–
 by numerical differentiation. We are interested in a particular function of

φ1, λ1, and α1, namely the estimated cumulative risk to age 70, F1(70;φ1,λ1,α1). The vari-
ance of this quantity is obtained by the delta method. Thus, we can estimate the number
of families and genotypes needed to estimate F1(70) with required precision.

RESULTS

Example With Binary Outcome

We illustrate these calculations using parameters based on results by Claus et
al. [1991], who estimated the lifetime probability of developing breast cancer among
carriers of a hypothetical dominant gene as φ1 = 0.92. Estimates of the allele fre-
quency q = 0.0033 and of the probability of developing disease in non-carriers, φ0 =
0.10, were also given. These calculations were based on studies of the phenotypes of
members of families of cases and controls under age 55 from the Cancer and Steroid
Hormone Study [Wingo et al., 1988]. Claus et al. [1991] did not measure gene status
in cases and controls (BRCA1 and BRCA2 had not been cloned). Instead they per-
formed a segregation analysis to investigate the plausibility of an autosomal domi-
nant model, and they used the conditional distribution of the phenotypes of the
relatives given the phenotypes of the probands (cases or controls) to estimate q, φ0,
and φ1. In fact, they used survival data to estimate cumulative incidence curves, F0

and F1, but, to illustrate our methods for binary data, we consider studies to estimate
q, φ0, and φ1. We seek the number of families and genotypes needed to obtain a 95%
confidence interval of width 2∆ = 2x.05 about the true penetrance φ1 = 0.92 using
various designs (Table I).

In order to obtain required precision from a cohort study, n1 = 114 carriers would
need to be followed (see equation (2.1)). To obtain 114 carriers, one will need to
genotype an expected 114/P(g = 1) = 114/{.00332 + 2(.0033)(.9967)} = 17,301 women.
The same number of women would need to be genotyped whether or not the allele
frequency is known.

One often thinks of case-control studies as requiring many fewer subjects than
cohort studies. As indicated in Table I, however, the case-control design requires
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TABLE I. Numbers of Families and Genotypes Needed to Estimate the Penetrance of q1 With
Precision ± 0.05*

q unknown q known

Design Families needed Genotypes needed Families needed Genotypes needed\

Cohort N/A 17,301 N/A 17,301
Case-control N/A N/A N/A 17,030a

GPD
1 Relative

ρ = 1 26,851 26,851 14,439 14,439
ρ = 0.5 18,534 18,534 14,872 14,872
ρ = 0.2 16,119 16,119 15,658 15,658
ρ = 0.1 16,080 16,080 16,068 16,068
ρ = 0 4,534,930 4,534,930 16,584 16,584

2 Relative
ρ = 1 13,418 13,418 8,808 8,808
ρ = 0.5 13,694 13,694 11,273 11,273
ρ = 0.2 14,234 14,234 13,778 13,778
ρ = 0.1 14,935 14,935 14,934 14,934
ρ = 0 61,028 61,028 16,338 16,338

GPDR (1 relative)
Always genotype relative

ρ = 1 3,549 7,098 3,231 6,462
ρ = 0.5 5,218 10,436 4,919 9,838
ρ = 0.2 7,367 14,734 7,289 14,578
ρ = 0 31,403 62,806 10,911 21,822

Genotype relative of g0 = 1
ρ = 1 3,940 4,167 3,907 4,132
ρ = 0.5 6,398 6,584 6,302 6,485
ρ = 0.2 12,347 12,495 9,970 10,090
ρ = 0 373,715 373,935 19,757 19,769

*The assumed parameters are q = .0033, θ0 = .10, and θ1 = .92. N/A, not applicable.
aThis number is based on optimal sampling of 1,524 cases and 15,506 controls. The probability of
disease, P(Y=1), is assumed known from registry data. This is equivalent to knowing the allele fre-
quency (see Methods and Notation).

genotyping 17,030 subjects, including 1,524 women with a personal history of breast
cancer and 15,506 control women. Even larger numbers of genotypes would be re-
quired if the case/control ratio were nearer unity, because the ratio 1,524/15,506 = 1/
10.17 minimizes the required number of genotypes (see equation (2.4)). Large samples
are required because the exposure (carrying a mutation) is so rare. The case-control
design can only be used to estimate φ1 if q or P(Y = 1) is known.

The GPD design has very different sample size requirements and properties
(Table I), depending on whether q is known or unknown, and depending on the pro-
portion of probands who are cases (ρ). If q is known, required numbers of families
and genotypes increase monotonically as ρ decreases, both for GPD(1,ρ) and
GPD(2,ρ) designs. If all probands are non-diseased (ρ = 0), GPD(1,0) requires 16,584
families and GPD(2,0) requires 16,338 families, numbers that are comparable to re-
quirements for the cohort and case-control designs. Using only case probands (ρ =
1) would reduce the needed sample sizes to 14,439 for GPD(1,1) and 8,808 for
GPD(2,1).
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If q is not known, much larger sample sizes are needed for GPD designs (Table
I). Interestingly, GPD(1,ρ) reaches a minimum required sample size 15,965 at ρ =
0.14 (data not shown), but the required numbers of families explodes to 4,534,930 as
ρ tends to zero. The required sample sizes for GPD(2,ρ) increase monotonically as ρ
decreases and reach 61,028 at ρ = 0. Thus GPD designs can be more or less efficient
than the cohort design if q is unknown, depending on the proportion of case probands.

The numbers of required families and genotypes can be reduced substantially if
relatives can also be genotyped (Table I), especially for studies with a high propor-
tion of case probands. With q known, only 3,231 families and 6,462 genotypes are
needed for studies based on case probands only (ρ = 1) when all relatives are
genotyped. Even further reductions in required genotypes can be achieved by
genotyping the relative only when g0 = 1, in which case 3,907 families and 4,132
genotypes are required. Similar efficiencies are seen even when q is unknown for
GPDR designs (Table I), but these efficiencies diminish as the proportion of control
probands increases, and vanish altogether when ρ = 0.

All these calculations are based on likelihoods that reflect information both from
the genotype of the proband and from the phenotypes of the relatives. If we ignore
the contribution to the likelihood, P(g0|Y0) from genotyping the proband, the loss in
precision for φ1 can be considerable. For example, with q assumed known, the vari-
ance ratio comparing the full likelihood variance to the variance based only on the
phenotype of the relative for the GPD(1,1) design is 54%; if q is unknown, using
only the phenotype of the relative is not sufficient to estimate φ1, φ0, and q. For the
GPD(1,0) design with q known, the variance ratio is 0.6%, and again, results are
indeterminate if q is unknown and only the phenotype of the relatives is used. For
the GPDR designs, losses from discarding information in P(g0|Y0) are less severe.
With q known and for case probands, the variance ratio for the GPDR with the rela-
tive always genotyped is 91%, and, with q unknown, over 99.9%. With control
probands, these respective ratios are 35 and 99.8%. Thus, especially for GPD de-
signs, a serious loss of information on φ1 may result from failure to incorporate P(g0|Y0)
into the likelihood, and, if q is unknown, may result in indeterminate estimates.

To show that the nature of the first-degree relative makes very little difference
in the GPD and GPDR designs, we recalculated some results in Table I with differ-
ent types of first-degree relatives. The value 18,534 that arises in GPD(1,0.5) with q
unknown becomes 18,530 when the relative of the daughter proband is her sister,
rather than her mother. Likewise, the value 13,694 for GPD(2,0.5) becomes 13,702
when the two relatives are sisters instead of a sister and mother. If the relatives are
genotyped as in GPDR designs, the required sample sizes are exactly as in Table I
when the relative is a sister instead of a mother.

Table for Sample Size Calculations for GPD and GPDR Designs With q
Unknown

To calculate the numbers of families needed to achieve a specified precision on
φ1 for a range of parameter values φ0, φ1, ρ, and q, we approximate the standard
deviation (SD) obtained for φ1 from data on a single family by a regression model.
To achieve a desired standard deviation SD0, one calculates the required number of
families as (SD/SD0)

2. These tabulations pertain to the case in which q is assumed
unknown.
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The logarithm of the standard deviation of φ1 decreases smoothly in log(q) for a
range of values of q near q = 0.01 (Fig. 2). The data in Figure 2 correspond to
GPD(1,ρ) designs. Note that a quadratic fits each locus well. The largest standard
deviations are found for ρ = 1, in accord with Table I. Such loci can be accurately
described by the equation

log(SD) = µ + β1ln(100q) + β2{ ln(100q)}2. (3.1)

In equation (3.1), the parameters µ1, β1, and β2 depend on the design used and on φ0,
φ1, and ρ. We used unweighted least squares to fit such a regression over the values q
= 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.025, 0.050,
0.075, 0.100. If a locus such as in Figure 2 reaches a minimum in the range 0.001 <
q < 0.100, the value of q at the minimum is used as the upper limit of the range of q
values to which the regression is fitted. We mention this upper limit in footnotes to
Tables II–V, which contain the parameters µ, β1, and β2 in equation (3.1).

For a given set of parameter estimates, µ^ 1, β
^

1, and β^ 2, the estimated SD is ob-
tained by exponentiating the right-hand side of equation (3.1). Note that exp(µ^ ) cor-
responds to the estimated SD at allele frequency q = 0.01.

To illustrate the use of Table II, consider φ0 = 0.10, φ1 = 0.95, ρ = .1, and q =
0.0033, which are similar to the parameters in Table I. Table II pertains to the GPD(1,ρ)
design in which phenotypic information is available from the mother of the proband.
From equation (3.1), SD = exp[.41391 – .49778ln(.33) – .00006{ln(.33)}2] =

Fig. 2. Plot of the natural logarithm of the standard error of φ^ 1 against the allele frequency, q, on a
log scale. Data are for the GPD(1,ρ) design with φ1 = .95, φ0 = .10, and ρ(Rho) = 0.1, 0.5 or 1, as
indicated. The standard error of φ^ 1 corresponds to the information from an average family drawn from
the mixture of families. The allele frequency is assumed unknown.
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TABLE II. Regression Coefficients to Approximate the Standard Deviation of q^ 1 Based on One Family for the GPD
(1, r) Design With Unknown Allele Frequency*

θ1

(θ0, ρ) .25 .50 .75 .95

.01 1 .17365 - .29099 .05726b .23138 - .21940 .06341a .25361 - .15634 .07293a .24613 - .11257 .07988a

.5 .32539 - .34371 .03581 .45651 - .29970 .03544 .46699 - .28512 .02651 .28385 - .35307 .00213

.1 .66758 - .35524 .01884 .90728 - .35977 .01546 .88377 - .38210 .00625 .38958 - .46399-.00555
.05 1 .86755 - .42358 .02797 .79380 - .36900 .04582 .72982 - .33437 .05215c .66449 - .31859 .05221

.5 .64122 - .43976 .01953 .84035 - .43113 .02094 .81568 - .42465 .01912 .49019 - .46286 .00527

.1 .83152 - .43796 .01807 1.05701 - .43296 .01773 1.00070 - .44812 .01286 .41591 - .49307-.00005
.10 1 1.24600 - .46342 .01428 1.11687 - .42470 .02803 1.01522 - .39416 .03813 .92571 - .37248 .04532

.5 .74966 - .46377 .01293 .98937 - .46454 .01230 .96290 - .46493 .01060 .55504 - .48992 .00119

.1 1.0019 - .47146 .00987 1.16943 - .45890 .01289 1.06397 - .46465 .01085 .41391 - .49778 .00006
.20 1 1.67030 - .48998 .00148 1.47361 - .46440 .01373 1.33162 - .44383 .02116 1.21367 - .42988 .02621

.5 .86036 - .48030 .00727 1.09638 - .48221 .00654 1.05830 - .48762 .00431  .56524 - .50374-.00203

.1 1.21008 - .49348 .00279 1.32188 - .48060 .00639 1.14647 - .47755 .00778 .39291 - .49955-.00006
.35 1 1.77464 - .48754 .00421 1.58754 - .47291 .01012 1.43301 - .46416 .01382

.5 1.14668 - .48831 .00428 1.07085 - .49444 .00211 .50316 - .50787-.00317

.1 1.45464 - .49378 .00182 1.23243 - .48691 .00475 .35055 - .49919 .00034

*The relative of the proband is the mother. The coefficients are µ, β1 and β2, respectively, in equation (3.1).
aUse only for q ≤ .025; bUse only q for ≤ .05; cUse only for q ≤ .075. Otherwise valid for q ≤ 0.10.
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TABLE III. Regression Coefficients to Approximate the Standard Deviation of q^ 1 Based on One Family for the GPD
(2, r) Design With Unknown Allele Frequency, q*

θ1

(θ0, ρ) .25 .50 .75 .95

.01 1 -.17213 - .28847 .05821b -.11364 - .21564 .06479a -.08844 - .14710 .07626a .10998 - .14612 .06523d

.5 .03244 - .35027 .03617 .14646 - .29017 .03822 .16437 - .26245 .03277 .05100 - .30741 .01094

.1 .44172 - .38403 .02068 .67138 - .36343 .01750 .68399 - .36505 .00851 .30727 - .44189 .00601
.05 1 .52098 - .42413 .02786 .44668 - .36829 .04630 .38321 - .34452 .04599b .31885 - .31377 .05435b

.5 .46537 - .45805 .01438 .59941 - .43039 .02104 .56785 - .41099 .02316 .33087 - .43957 .01101

.1 .70389 - .46227 .01179 .90921 - .45432 .01359 .87477 - .45972 .01085 .37267 - .49356-.00028
.10 1 .89939 - .46474 .01376 .76969 - .42534 .02769 .66803 - .39377 .03849 .58159 - .37750 .04098c

.5 .62686 - .48050 .00734 .80023 - .46859 .01064 .76296 - .45840 .01246 .44311 - .47819 .00444

.1 .88021 - .48532 .00528 1.04745 - .47782 .00725 .96956 - .48274 .00599 .38527 - .50355-.00169
.2 1 1.32098 - .49489 .00275 1.12620 - .46600 .01313 .98442 - .44500 .02070 .86696 - .42977 .02629

.5 .77317 - .49265 .00287 .96021 - .48956 .00387 .91576  - 48808 .00388 .49766 - .50035-.00109

.1 1.07205 - .49879 .00017 1.20355 - .49282 .00240 1.07388 - .49410 .00222 .37523 - .50711-.00270
.35 1 1.42684 - .48931 .00330 1.23956 - .47518 .00958 1.08590 - .46534 .01315

.5 1.04237 - .49626 .00110 .97055 - .49897 .00032 .46272 - .50817 .00342

.1 1.31559 - 50011-.00072 1.16321 - .49817 .00048 .33878 - .50565-.00214

*The relatives of the proband are the mother and sister. The coefficients are µ, β1 and β2, respectively, in equation (3.1).
aUse only for q ≤ .025; bUse only for q ≤ .05; cUse only for q ≤ .075. Otherwise valid for q ≤ 0.10.
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TABLE IV. Regression Coefficients to Approximate the Standard Deviation of q^ 1 Based on One Family for the GPDR
Design With Unknown Allele Frequency, q*

θ1

(θ0, ρ) .25 .50 .75 .95

.01 1 .04218 - .31835 .04790 -.00919 - .25109 .05251 -.24355 - .21160 .05178 -.97441 - .18922 .05013
.5 .24114 - .32484 .04228 .26471 - .27266 .04577 .05106 - .23673 .04463 -.67424 - .22344 .03924
.1 .59442 - .33658 .02535 .75847 - .32250 .02792 .60074 - .30202 .03003 -.11811 - .30765 .02644

.05 1 .61590 - .43884 .02148 .50236 - .39550 .03362 .21258 - .36359 .04055 -.55526 - .34320 .04421
.5 .51949 - .42359 .02544 .63147 - .40986 .02925 .42265 - .39046 .03217 –.31168 - .38041 .03090
.1 .70094 - .42362 .02311 .88504 - .41313 .02554 .74983 - .41172 .02744 .05155 - .43526 .01905

.10 1 .86037 - .46835 .01219 .75962 - .43907 .02162 .46515 - .41529 .02846 -.30917 - .39916 .03266
.5 .60726 - .44907 .01836 .77196 - .44593 .01949 .59474 - .43777 .02104 -.12581 - .43294 .02021
.1 .80503 - .45787 .01500 .96292 - .44375 .01868 .81729 - .44161 .02039 .11247 - .46537 .01231

.20 1 .06993 - .48489 .00557 1.00441 - .46808 .01197 .72026 - .45280 .01723 -.05207 - .44164 .02078
.5 .68836 - .46674 .01256 .87291 - .46611 .01278 .72844 - .46702 .01235 .02976 - .46924 .01035
.1 .90868 - .47913 .00841 1.05165 - .46763 .01156 .88445 - .46235 .01389 .14315 - .48097 .00762

.35 1 1.17695 - .48244 .00663 .91090 - .47288 .01034 .14635 - .46542 .01297
.5 .92100 - .47380 .00996 .78560 - .47824 .00856 .09913 - .48677 .00479
.1 1.11048 - .48029 .00737 .93797 - .47462 .00964 .13745 - .48596 .00583

*The relative of the proband is the mother, who is also genotyped.The coefficients are µ, β1 and β2, respectively, in equation (3.1).
Valid for q ≤ .10.

29



30
G

ail et al.TABLE V. Regression Coefficients to Approximate the Standard Deviation of q^ 1 Based on One Family for the GPDR
Design With Unknown Allele Frequency, q, in Which the Relative Is Genotyped Only If the Proband Is a Carrier*

θ1

(θ0, ρ) .25 .50 .75 .95

.01 1 -.52331 - .31874 .04765 -.19885 - .25135 .05241 -.27511 - .21178 .05171 -.97031 - .18936 .05008
.5 -.20673 - .33100 .04300 .12682 - .26088 .04894 .05189 - .21889 .04965 -.64913 - .20196 .04706
.1 .44563 - .38707 .02420 .85273 - .31018 .03145 .81524 - .24839 .03803 .10430 - .20567 .04703

.05 1 .13986 - .44118 .02067 .36349 - .39670 .03313 .21207 - .36442 .04022 -.53003 - .34386 .04395
.5 .37517 - .45094 .01676 .63730 - .40626 .02924 .49465 - .37488 .03689 -.25092  - .36502 .03677
.1 .78840 - .47807 .00732 1.23538 - .44155 .01631 1.17985 - .39816 .02783 .38241 - .36913 .03755

.10 1 .48549 - .47211 .01055 .68114 - .44132 .02074 .50237  - 41687 .02784 –.25860 - .40043 .03216
.5 .62639 - .47953 .00830 .89488 - .45050 .01754 .73607 - .42726 .02416 -.02751 - .42214 .02437
.1 .87360 - .49146 .00354 1.37166 - .47477 .00840 1.34421 - .44624 .01670 .51843 - .42415 .02511

.2 1 .87278 - .49085 .00313 1.03909 - .47201 .01047 .82846 - .45563 .01610 .04598 - .44398 .01986
.5 .84520 - .49250 .00266 1.14585 - .47838 .00800 .97794 - .46410 .01298 .18590 - .46318 .01277
.1 .92144 - .49466 .00236 1.45618 - .49049 .00335 1.47171 - .47817 .00753 .64570 - .46202 .01445

.35 1 1.36909 - .48805 .00437 1.11673 - .47721 .00863 .30890 - .46906 .01154
.5 1.33423 - .49059 .00308 1.16827 - .48271 .00633 .32691 - .48305 .00620
.1 1.48734 - .49420 .00180 1.53596  -.49209 .00250 .76203  - .48034 .00639

*The relative of the proband is the mother. The coefficients are µ, β1 and β2, respectively, in equation (3.1).
Valid for q ≤ .10.
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exp(.96571) = 2.62664. To obtain a desired standard deviation of SD0 = 0.05/1.96 =
.02551, we therefore require (SD/SD0)

2 = 10,602 families. This compares with the
number 16,080 in Table I for φ1 = 0.92, because SD decreases with increasing φ1 in
this range. To try to estimate the number of families required for φ1 = .92 from Table
II, we calculated that 37,133 families were required for φ1 = 0.75, φ0 = 0.10, ρ = 0.1,
and, using linear interpolation between φ1 = 0.75 and φ1 = 0.95, we obtained an
estimate of 14,582 families needed for φ1 = 0.92. Thus, reasonable approximations
may be obtained by linear interpolation from calculations based on Table II.

The calculations of SD derived from Table II are themselves quite accurate. For
example, the SD = 2.62664 calculated above is quite close to the exact value, 2.62534.

We assessed the accuracy of these regressions in terms of the relative error,
100x|SD

^  – SD|/SD, where SD
^
 is estimated from the regression and SD is the true

value. Over the valid ranges of q indicated in the footnote to Table II, the maximum
relative error was 4.6%, but most relative errors were less than 1% for 0.002 ≤ q ≤
0.01. The maximum relative errors in Tables III–V were, respectively, 4.6, 2.6, and
2.9%, and most relative errors were much smaller.

Survival Data

To estimate the precision with which the cumulative incidence of disease can be
estimated for carriers and non-carriers from the GPD design, we simulated data with
similar cumulative incidence functions as those estimated by Claus et al. [1991]. In
particular, we used Weibull models F1(t) and F0(t) given by equation (2.13) with φ1 =
.92, λ1 = .016, and α1 = 4.047 and with φ0 = .10, λ0 = .013, and α0 = 5.148. The
means and variances of F1 and F0 match those of the normal survival models in
Table III of Claus et al. [1991]. In particular, F1 has a mean of 55.4 years and stan-
dard deviation of 15.4 years, and F0 has a mean of 69.0 years and standard deviation
of 15.4 years. We used the allele frequency of q = 0.0033 from Claus et al. [1991].
We used a bivariate normal distribution of (potential) ages of the proband, a0, and
mother, a1, modeled on data from the study by Struewing et al. [1997]. The means of
a0 and a1 were 51.96 and 80.35 years, and the covariances were σ00 = σ01 = 201.6 and
σ11 = 381.77. Non-breast cancer related death times, d0 and d1, were generated from
a piecewise constant hazard model (5-year intervals) of U.S. mortality rates, exclud-
ing breast cancer. Ages at cancer incidence v0 and v1 were generated from F0 and F1.
For probands who developed breast cancer before age a0, we generated an exponen-
tially distributed survival time with mean 20 years. If d0 and v0 plus this survival
time both exceeded a0, the data from the proband and her mother were used. Other-
wise, we discarded this pair, because such a pair corresponds to a proband who had
died before the study. The quantities Y0 and Y1 were then calculated as described in
Methods and Notation from (a0,d0,v0) and (a1,d1,v1).

One million simulations, each containing 5,000 families with a proband and
mother, were used to estimate the information matrix, as described in Methods and
Notation. These simulations were used to estimate the information matrix and not to
study the statistical properties of F

^
1 or F^ 0. Values of F1(t) at ages 40, 50, 60, and 70

were, respectively, .151, .330, .556, and .757, and, from the information matrix, we
calculated respective standard errors of F^

1 from the GPD design with 5,000 families
of .053, .073, .093, and .111. Corresponding values F0(t) were .004, .012, .027, and
.050, with respective standard errors of F^ 0 of .001, .001, .002, and .003. The logit
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transform reduces skewness in F
^

1 and  F^ 0 when F1 and F0 are near 0 or 1. Using the delta
method for the logit transform log {F1/(1 – F1)}, we obtained an expected confidence
interval on F1(70) of (.487, .911). Thus, even estimates based on 5,000 families are sub-
ject to considerable random uncertainty, as was noted by Struewing et al. [1997].

Unreported data confirm that the simulation approach to estimating the Fisher
information matrix yields covariance estimates for underlying parameters that are in
good agreement with empirical estimates of the covariance matrix derived from simu-
lated sets of parameter estimates. Thus, the approach outlined in Methods and Nota-
tion may be used to define sample sizes needed to achieve required precision.

DISCUSSION

The main purpose of this paper is to present methods and results for calculating
sample sizes needed to estimate penetrance of an autosomal dominant gene with
required precision from cohort, case-control, GPD, and GPDR designs. Data needed
to compute such sample sizes for GPD and GPDR designs with dichotomous pheno-
types are given in Tables II–V for a wide range of parameters, and methods are also
presented for survival data.

In selecting an appropriate design, one should consider both the validity of the
inference and the feasibility of the design. Some designs can yield seriously biased
results if non-representative samples are obtained, as we discuss in the Validity sec-
tion. Sample size requirements are one aspect of feasibility, but there are other prac-
tical considerations.

Feasibility

The prospective cohort study suffers the serious disadvantage that one may need
to wait many years to observe disease outcomes, and large numbers of subjects may
need to be screened to obtain a sufficiently large cohort of gene carriers. The histori-
cal cohort design allows one to avoid waiting for events to occur by relying on a
previously constituted cohort for which stored biological materials are available for
genotyping. One must examine all carriers in the cohort, review their medical records,
or rely on disease registries to establish disease status of carriers. As indicated in
Table I, the numbers of subjects one needs to screen to identify carriers may be
formidable. If one would settle for a precision of ±10% instead of ±5% in estimating
penetrance, however, the required numbers would be reduced by a factor of four.
Unless consent for genotyping had been obtained earlier, there could be ethical or
practical obstacles to obtaining consent from members of a large cohort, some of
whom may have become lost to follow-up or died.

The case-control design will also require large sample sizes to estimate the pen-
etrance of rare mutations (Table I), but it avoids the difficulty of waiting for health
events to occur, and it affords an opportunity to obtain informed consent when cases
and controls are accrued. In order to use this design, either q must be known or the
probability of disease in the population must be known.

The GPD and GPDR designs usually require somewhat smaller numbers of geno-
types than do cohort and case-control designs, as illustrated in Table I. Some extra
work is needed, however, to determine the phenotypes of relatives, and even more
effort may be required to obtain genotypes of relatives. A feasibility assessment should
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take these extra costs into account. Informed consent would ordinarily be obtained
from the probands in such studies, but more consideration is required concerning
informed consent to contact or genotype relatives of probands.

The calculations in this paper are based on the assumption that probands are at
risk of disease, as would usually be the case for an autosomal dominant disease. In
fact, in the study by Struewing et al. [1997], 30% of the probands were male and
therefore essentially not susceptible to breast cancer. Therefore, the contribution to
the likelihood from genotyping a male proband [see equation (2.6)] is independent
of the penetrance parameters that apply to women. Thus, male probands are less
informative regarding penetrance than female probands, although the contribution to
the likelihood from phenotyping the female relatives of male probands is still infor-
mative [see equation (2.7)]. If males are to be included as probands and are regarded
as non-susceptible, sample sizes can be estimated by using the methods in this paper
with ε0 = P(g0 = 1) in equation (2.9).

Validity

The internal validity of a cohort study depends on identifying all initial cohort
members, correctly genotyping them, and, for purposes of estimating the penetrance
of carriers, obtaining a complete and accurate assessment of the disease status of all
carriers. For the results to be generalizable, the initial cohort screened should be
typical of the general population, unless it can be assumed that other factors apart
from genotype have no influence on the probability of disease. Two problems need
to be avoided. First, all carriers or a representative sample of the carriers in the
cohort must be identified. If, instead, one tended to preferentially genotype subjects
with disease, then carriers without disease would be under-represented, leading to
overestimates of penetrance. Second, follow-up of all carriers should be complete. If
non-diseased carriers tended to be lost to follow-up more than diseased carriers, pen-
etrance could again be overestimated. These two problems can be avoided by prop-
erly defining the cohort and using active follow-up procedures that apply equally to
diseased and non-diseased subjects.

One issue that is hard to control in prospective cohort studies is the possibility
that carriers will take preventive action, such as women who take tamoxifen to re-
duce breast cancer risk. The penetrance estimate will apply under these conditions of
preventive care. If one wishes to understand the natural history of the disease, his-
torical cohort studies or other designs would be preferable. (We thank Mr. Laurence
Freedman for pointing this out.)

The validity of penetrance estimates for the case-control design depends princi-
pally on the ability to obtain representative samples of cases and controls. Ideally,
cases and controls are obtained from a population-based design that allows for prob-
ability sampling. If cases with a strong family history or from families known to
carry the mutation have higher participation rates in the study than other cases or
controls selected for inclusion, penetrance will be overestimated. Likewise, if con-
trols tend to refuse to participate if they have a strong family history or if the muta-
tion is known to be segregating in their family, penetrance will be overestimated. If
participation rates depend only on family history, and not on known mutations in the
family, however, these biases are likely to be modest, as we illustrate in connection
with Table VI.
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TABLE VI. Distribution of Families by the Phenotypes (Y) and Genotypes (g) of Proband
Daughters (g0, Y0) and Their Mothers (g1, Y1)*

Y1 1 1 1 1 0 0 0 0
g0 1 1 0 0 1 1 0 0
Y0 1 0 1 0 1 0 1 0
g1 = 0 302 26 9,901 89,112 2,714 236 89,112 802,006
g1 = 1 2,802 244 302 2,714 244 21 26 236

*This distribution of 999,998 families is based on the parameters in the legend to Table I, modelled on
the data in Claus et al. [1991].

The GPD and GPDR designs are subject to much more severe biases than co-
hort or case-control designs if the probands who volunteer tend to be those who have
families with affected relatives. Table VI describes the distribution of (Y1,g1,Y0,g0)
in a population of 999,998 families consisting of mothers with (Y1,g1) and proband
daughters with (Y0,g0). The distribution corresponds exactly to the parameters and
assumptions in Table I, the motivating example. In particular, in this population, φ1 =
P(Y0 = 1|g0 = 1) = 6062/(6062 + 527) = .92002, which equals .92, apart from round-
ing. Likewise φ2 = P(Y1 = 1|g1 = 1) = 6062/(6062 + 527) = .92002.

Suppose the only daughters in this study who volunteer as probands are those
with affected mothers (Y1 = 1). Among such daughters, 3,104 have g0 = 1, Y0 = 1,
and 270 have g0 = 1, Y0 = 0. Thus a cohort study would yield the correct penetrance
estimate 3,104/(270 + 3104) = .9200.

A case-control study conducted in this same subpopulation with Y1 = 1 would
yield the estimate P

^
(g0 = 1|Y0 = 1) = .23326, rather than the correct value of 0.0575

for the entire population. Likewise P
^
(g0 = 1|Y0 = 0) = .002932, rather than the cor-

rect value, 0.00059, and  P
^
(Y0 = 1) = .1262, rather than the correct value 0.1054. None-

theless, substituting each of these incorrect values in equation (2.2), we estimate φ1 as
0.920, the correct value! Even if we use the correct population probability P(Y = 1) =
0.1054 in equation (2.2), we estimate φ1 as .904, which is close to correct.

To understand why cohort and case-control designs are not susceptible to bias
from participation rates that depend only on family history, consider the cohort de-
sign. Under the conditional independence assumption that Y0 is independent of Y1
given g0, the cohort obtained by sampling with probabilities determined by Y1 will
still yield unbiased estimates of P(Y0|g0). This intuition can be made rigorous by
defining the indicator U = 1 if a person is included in the cohort and 0 otherwise,
where P(U = 1|Y0,Y1,g0) = P(U = 1|Y1) depends only on Y1. Then, for members of
the selected cohort,

P U Y g P Y P U Y P g Y U P Y g Y U

P Y P U Y P g Y U P Y g

K g P Y g

Y

Y
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where K is a positive function depending only on g0. Thus P(Y0|g0,U = 1) = P(U =
1,Y0,g0)/P(g0,U = 1) = P(Y0|g0), which reduces to φ1 for g0 = Y0 = 1. Because in
expectation the case-control design yields the same estimates as the cohort design, it
also yields unbiased estimates of φ1 and φ0. As we illustrate below, however, if the
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selection probability P(U = 1|Y0,Y1) depends both on Y0 and Y1, which we term
“differential non-response bias,” a modest bias in φ^ 1 is introduced with cohort and
case-control designs.

In contrast, both the GPD and GPDR designs lead to serious overestimates
of φ1 in this example. In fact, for the GPD design with q unknown, φ^ 1 = .99998
and φ^ 0 = .99908, far from the correct values φ1 = .92 and φ0 = .10. Likewise the
GPDR design with all mothers genotyped yields φ^ 1 = .99999 and φ^ 0 = .99978.
The estimates of φ1 and φ0 from the GPD and GPDR designs are exactly 1.0 if
one discards the contribution to the likelihood from P(g0|Y0). This is admittedly
an extreme example, but it illustrates that the GPD and GPDR designs are much
more susceptible to biased sampling based on family history than are cohort or
case-control designs.

A modest bias can be induced in cohort and case-control studies, as well as in
GPD and GPDR studies, if participation depends differentially on family history for
probands with and without disease. For example, suppose that all daughters with
disease (Y0 = 1) whose mothers are also affected (Y1 = 1) participate, but only
50% of other daughters participate. Then, from Table VI the numbers of daugh-
ters with (g0,Y0) = (1,1), (1,0), (0,1), and (0.0) are, respectively, 4,583, 263.5,
54,772, and 447,034. In this selected population, the estimate of φ1 from a cohort
study is 4,583/(4,583 + 263.5) = .946. For a case-control study, the estimate of
φ1 is, from equation (2.2), .946, where P(Y0 = 1) is estimated as 59,355/506,652
= .1172 in this selected population. If the original population value P(Y0 = 1) =
.1054 is used instead, we estimate φ^ 1 = .939 from equation (2.2). Thus, differen-
tial non-response on the basis of family history and disease status of the proband
induces a modest bias in the estimate of φ1 for the cohort and case-control de-
signs. Differential non-response induces a similar degree of bias for GPD and
GPDR designs in this case. If the allele frequency is unknown, the correspond-
ing estimates of φ1 from the GPD and GPDR designs are, respectively, .956 and
.945. As explained previously, non-differential non-response based on family his-
tory induces no bias in cohort or case-control estimates of φ1, provided the con-
ditional independence assumption holds, whereas the GPD and GPDR designs
are highly susceptible to bias in this situation.

The information obtained from the proband on the medical history of relatives
in the GPD design may be less reliable than medical history obtained directly from
participants in a case-control study, particularly if one is seeking information on age
at disease onset.

We have validated by simulation in a few cases that the sample sizes calculated
for GPD designs yield the promised precision for estimating φ1. These calculations
are based on asymptotic methods. We have noticed that if one uses much smaller
samples, the distribution of φ^ 1 may be skewed or have considerable mass on a bound-
ary like φ^ 1 = 1, calling into question the validity of standard asymptotic inference.
Further research would be needed, for example, to define appropriate interval esti-
mates of φ1 for small samples and to develop sample size estimates for small studies
with poor precision.

A reviewer pointed out that Hardy-Weinberg equilibrium (HWE) would not be
satisfied if the population consisted of strata with varying allele frequencies and if
members of such strata only mated with others within their stratum. If stratum mem-
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bership can be determined, a stratified analysis that assumed HWE within each stra-
tum could be performed, and, under the assumption that φ0 and φ1 are constant across
strata, combined stratified estimates of φ0 and φ1 could be obtained as weighted aver-
ages of the stratum-specific estimates. Maximum likelihood based on the product of
stratum-specific likelihoods could also be used. Sample size calculations could be
derived from this modified likelihood.

If stratum membership is unknown, the model based on HWE is incorrect for
the GPD and GPDR analyses. One can determine the biases that result from using
the methods in this paper when, in fact, the population is stratified. As an example,
consider two strata constituting 20 and 80% of the population, respectively, and with
respective allele frequencies 0.0150890903 and 0.0003744514. These allele frequen-
cies were chosen so that the carrier frequency in the whole population is P(g = 1) = 1
– (1 – 0.0033)2 = 0.00658911, just as in Table I. Examination of the score equations
shows that in large samples with ρ = 0.1 the estimate of φ1 converges to 0.920010 if
q is assumed known and to 0.920011 if q is assumed unknown. There is, therefore, a
very small asymptotic bias compared to the true penetrance, 0.92, that holds for a
population with this carrier frequency under HWE. Respective estimates of φ0 con-
verge to 0.100014 and 0.00014, compared to 0.10, and the estimates of q in the
three-parameter model converges to 0.0033. Sample size calculations needed to ob-
tain a precision of ±5%, as in Table I, require the use of a “sandwich estimator” for
the variance, because the variance of the score does not equal the expected deriva-
tive of the score when the model is misspecified. The sample sizes required based on
the sandwich procedure are 16,061 if q is assumed known and 16,075 if q is as-
sumed unknown, which hardly differ from the corresponding values 16,068 and
16,080 in Table I. These calculations indicate that stratification in the presence
of small allele frequencies usually has only a minor impact on estimates of pen-
etrance and required sample sizes for the GPD.

Stratification of this type has no impact on inference from cohort studies, and
even the sample size requirements for cohort studies will be unaffected so long as
the carrier frequency in the whole population remains fixed and penetrances are con-
stant over strata. Likewise, inference and sample size calculations for population-
based case-control studies will be unaffected provided the carrier frequency in the
whole population is fixed, penetrances are constant across strata, and representative
samples of cases and control are obtained from the entire population. Letting P(j)
denote the proportion of the population in stratum j, we calculate

P g Y P j P g j P j P g j P g j

P g P g P g

jj
( | ) ( ) ( | ) / ( ){ ( | ) ( | ) }

( ) / { ( ) ( )},

= = = = + =

= = = + =

∑∑1 1 1 0

1 1 0

1 1 0

1 1 0

φ φ φ

φ φ φ

which is the same for any stratification scheme that preserves the carrier frequency,
P(g = 1).

We have assumed that phenotypes within a family are conditionally indepen-
dent, given carrier status, for our purposes of study design. One should, of course,
consider the possibility of residual familial correlation during the analysis of such a
study [see, e.g., Li and Thompson, 1997].
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APPENDIX: LIKELIHOODS AND INFORMATION FOR GPD AND
GPDR DESIGNS

GPD Design

Suppose there are N proband cases (Y0 = 1) and M proband controls (Y0 =
0). Let Nijk  be the number of families of case probands with g0 = i, Y1 = j, Y2 = k,
and define Mijk similarly for families of control probands. Let pjk = P(g1 = j,g2 =
k|g0 = 1) and wjk = P(g1 = j,g2 = k|g0 = 0), and let ε1 = P(g0 = 1|Y0 = 1), and ε0 =
P(g0 = 1|Y0 = 0), as in equations (2.8) and (2.9). Finally, let Z be the number of
proband cases who are carriers (g0 = 1), and X be the number of proband con-
trols who are carriers (g0 = 1). Note that pjk and wjk are functions of the allele
frequency q.

The total likelihood for the N + M families is L = L (case probands) × L (con-
trol probands). Here L (case probands) =
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(A1)

The expression for L (control probands) is identical to equation (A1) except that X,
M, Mijk, and ε0, replace, respectively, Z, N, Nijk, and ε1.

The information matrix for a study of a single case proband family is obtained
by setting N = 1 and by numerically differentiating the logarithm of -L(case proband)
twice with respect to φ1, φ0, and q (unless q is assumed known), while Z and {Nijk}
are set at their expected values. For example, EZ = ε1 and E(N111) = φ1

2p11 + φ1φ0p10 +
φ0φ1p01 + φ0

2p00. These expectations are regarded as fixed constants and not as func-
tions of φ1, φ0, and q for purposes of differentiation. The information matrix for a
control proband family is found similarly.

The information from families with a single relative with phenotype Y1 is ob-
tained as in equation (A1). Letting Nij denote the number of families of case probands
with g0 = i and Yi = j, Mij denote the number of such families of control probands, pj

= P(g1 = j|g0 = 1), and wj = P(g1 = j|g0 = 0), we express the likelihood for N families
with case probands as
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where Z of the N case probands were carriers. The likelihood for M control proband
families is given by equation (A2) with X, M, Mij, and ε0 replacing Z, N, Nij, and ε1,
respectively. Here X is the number of control probands who are carriers. The information
matrix is obtained by numerical differentiation as described for the case of two relatives.

The expressions (A1) and (A2) apply for any type of relative of the proband pro-
vided the conditional distributions pjk and wjk or pj and wj, are calculated appropriately.

GPDR Design

First, we consider families with one relative in which both the proband and
relative will be genotyped. Suppose there are N families with case probands. Let
Rijk be the number of families with g0 = i, g1 = j, Y1 = k. The likelihood for these
families is
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The likelihood for families with control probands, L (control proband), is identical
except that N is replaced by M, ε1 is replaced by ε0, and Rijk now corresponds to
families with control probands. The information matrix is obtained by numerical
differentiation of minus the log-likelihood with random variables Rijk, regarded as
constants, set at their expected values. For example, to compute the information from
a single case proband family we set N = 1, and, corresponding to equation (A3), we
set E(R111) = ε1p1φ1, E(R110) = ε1p1(1 – φ1) . . . , E(R000) = (1 – ε1)w0(1 – φ0).

If we only genotype the relative when the proband is a gene carrier (g0 – 1), the
likelihood is modified. For case probands, the likelihood becomes
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(A4)

where R0+1 = R011 + R001 and R0 +0 = R010 + R000. The information matrix is calculated
as before with E(R0+1) = E(R011) + E(R001) and E(R0+ 0) = E(R010) + E(R000).
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