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SUMMARY.

The selection of a single method of analysis is problematic when the data could have been

generated by one of several possible models. We examine the properties of two tests designed to have high
power over a range of models. The first one, the maximum efficiency robust test (MERT), uses the linear
combination of the optimal statistics for each model that maximizes the minimum efficiency. The second
procedure, called the MX, uses the maximum of the optimal statistics. Both approaches yield efficiency
robust procedures for survival analysis and ordinal categorical data. Guidelines for choosing between them

are provided.

KEY WORDS:

Asymptotic relative efficiency; Censored data; Contingency tables; Dose-response data; Ef-

ficiency robustness; Stratified data; Survival analysis; Weighted log-rank statistic.

1. Introduction

In many applications, the precise form of the model under-
lying the data is not known; however, several scientifically
plausible ones are available. Often optimal tests for each of
them exist. Unfortunately, use of any one optimal test may
lead to a loss of power under another model. Two approaches
have been developed to obtain a single test with good power
properties over the range of the models. In survival analy-
sis, Tarone (1981) and Fleming and Harrington (1991) use
the maximum of the standardized optimum statistics (MX).
Alternatively, the maximin efficiency robust test (MERT) de-
veloped by Gastwirth (1966, 1985) and Birnbaum and Laska
(1967) uses a linear combination of the optimal tests.

This paper shows how the efficiency robustness properties
of the two methods depend on the null correlation matrix of
the optimal tests and compares their power properties in sur-
vival and dose response settings. Our aim is to provide guide-
lines for choosing a robust test. The necessary background is
provided in Section 2. Section 3 presents the comparison of
the two methods in the survival setting. Section 4 is devoted

to the analysis of 2 x K tables. Section 5 presents recommen-
dations for use of the methods.

2. General Background

Often the precise distribution underlying the data is not
known, although a family, ¥ : {f;; i = 1,...,I}, of plau-
sible alternatives can be specified. Consider a situation where
the following three conditions hold: (1) asymptotically most
powerful tests, {S;}, ¢ = 1,...,1, for the respective mem-
bers of the alternative family ¥ exist; (2) under the null hy-
pothesis, standardized versions {T;} of the {S;} are asymp-
totically jointly multivariate normal with correlation matrix
{pi;}, where all p;; > 0; and (3) the Pitman asymptotic rel-
ative efficiency (ARE) of the test T; relative to the test T}
when T} is optimum is pgj = (Ti,Tj)Z. These conditions are
satisfied in a wide variety of applications (Van Eeden, 1964;
Gross, 1981).

For any asymptotically normal test statistic 7', denote its
relative efficiency to the optimal test T; for model f; by e(T), ).
The lowest ARE T has when a model in ¥ is true is denoted
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e(T,¥) = infi<;<;{e(T,i)}. MERT satisfies

e(MERT, ¥) = 151;1; L;ilél{e(T’ 1)}} ,

where T' is the set of all consistent asymptotically normal tests
for the problem. Gastwirth (1966) showed that, when the min-
imum correlation of the optimal tests T}, p* = min(p;;), is >0,
the MERT exists, is unique, and is a linear combination of the
{T;}. Another robust test statistic is MX = max; <;</(T;).
Asymptotically, under the null hypothesis, MX is distributed
as max[MN (0, {pi;})].

The correlation matrix, {p;;}, of the optimal statistics sum-
marizes the structure of the family of alternative models, as
each correlation reflects how close the two models are (Hall
and Joiner, 1982). When the models are very far apart, an
adaptive procedure (Bickel, 1982) is needed.

3. Applications to Survival Analysis

We assume that n; (i = 1,2) patients are allocated between
two treatment groups and the random censorship model ap-
plies. Associated with patient j in group i is a survival time
Ui; and a censoring time V; j, which are independent random
variables with survival functions S;(t) and C;(¢), respectively.
We observe T; = min(U;;, Vij). Let T} denote the ordered
failure times in the pooled sample. Weighted log-rank tests
are used to test the equality of two survival distributions Hy:
Si(t) = Sa(t) = S(t), ie.,

LRy =Y W(T})(Ox ~ Ey), (1)
k

where Oy, and E}, are the observed and conditionally expected
numbers of failures in group 1 at time T}, under Hy and W(+)
is a weight function. Let S(¢—) denote the Kaplan-Meier es-
timator in the pooled sample. Fleming and Harrington (1991,
p- 257) introduced the family G** with the weight function
W(t) = {S(t-)}*{1 ~8(t-)) (for 0 < a,0 < b), and showed
that conditions 1, 2, and 3 of Section 2 hold.

We consider four members of this family: GU'U, G’Q‘U, GY2,
and G%2. These cover a wide range of possible differences in
the survival distributions. Specifically, the four statistics are
designed to detect constant difference, early difference, late
difference, and middle difference, respectively. The correlation
matrix (uncensored case) for the family is

G().() GQ.() G(),2 GQ.‘Z
G" 1 745 745 837
G0 1 167 .535
GY-? 1 535
02.2 1

Tests G"Y and G?° were shown (Fleming and Harrington,
1991) to be asymptotically most powerful for specific location
alternatives. While the analytical forms of the survival distri-
butions for which the tests G°2 and G22 are optimal are not
known, they can be approximated since the optimal weight
function for a test of the form (1) is proportional to the log
hazard ratio (Schoenfeld, 1981). The alternatives for which
the four statistics G¥0, G*Y, GY2 and G?? are optimal are
labeled models A, B, C, and D, respectively.

Monte Carlo simulations were performed for the four alter-
native models in order to compare the powers of the MERT
and MX procedures. We present a brief summary of how the
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simulation studies were conducted; a more detailed descrip-
tion appears in Freidlin, Podgor, and Gastwirth (1998). The
survival times in group 1 were exponential (A = 1) in all
cases. For alternative model A, group 2 survival times were
exponential (A = 2). For alternative model B, group 2 sur-
vival times were generated according to formula (4.24) from
Fleming and Harrington (1991, p. 275) with A = 1.526. The
alternative models C and D were approximated by taking the
log hazard ratio equal to the weight function. We considered
both censored and uncensored data for all models. Censor-
ing was simulated using the uniform (0, 2) distribution, which
resulted in approximately 43% patients censored under Hyg.
Each treatment group had 50 patients, and 5000 replications
were done for each model in all cases. The following families
of alternative models were considered: (1) family of models
A, B, C, and D, p* = .167; (2) family of models A, B, and D,
p" = .535; and (3) family of models A and D, p" = .837.

For each family of alternatives, Table 1 gives the powers of
the one-sided .05 level tests optimal for the alternative models,
the MERT, and the MX test for the family. For the family that
consists of all four models A, B, C, and D (p* = .167), the MX
statistic is more powerful than the MERT under three of the
four models. For the family of models A, B, and D (p" = .535),
the power advantage of the MX is small, especially in the
censored case. For the family consisting of models A and D
(p* = .837), there is no loss in power from using the MERT
statistic.

4. Efficiency Robust Procedures for
Ordered Categorical Data

Consider an experiment where response rates in K ordered
groups are compared. Let n;, X;, and m; denote the sample
size, number of responses, and the probability of response in
the ith group, respectively (1 =1, .. ., K), i.e., the X; are bi-
nomial random variables with parameters n; and ;. Suppose
it is expected that response probabilities, m;, are monotone
and can be modeled by a function w; = H(a+ Bv;), where H
is a twice differentiable monotone link function, e.g., logistic
m; = exp(a+0v;)/[1+exp(a+ Bv;)] and v; are the monotone
column scores. We are interested in testing the null hypothesis
Hop: B = 0 corresponding to 7| = 719 = - .- = T = T against
Hi: 8 # 0 (two sided) or Ha: 3 > 0 (one sided). Tarone
and Gart (1980) showed that, for the data generated by the
model with link function H and scores v, = {vsa,. o vs i h
the asymptotically most powerful test does not depend on H
and is given by

K
Ts = ZV,s'.i(Xi - n77})/\/‘7'1">
=1

where
¢ K

fr:E z; E n;
i=1

i=1
and
K K 2 K
Vp=a(l—#) | Y vim; - (Zus,mz) / > on
i=1 i=1 i=1

Suppose only a family of alternative sets of scores can be spec-
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Table 1
Empirical power estimates, survival setting

Family: Models A, B, C, and D
Uncensored MERT weights = (0, .5949, .5949, .1248); p* = 167

G*0 G*° G"? G*? MERT4 MX4
Uncensored
Model A 951 .805 .836 .892 .952 .927
Model B .815 .950 207 .592 817 .899
Model C .688 .150 .921 .549 764 .848
Model D .879 .449 769 916 .853 .895
Null .048 .048 .061 .052 .051 .052
Censored
Model A .873 757 .645 783 .866 .839
Model B .873 .944 .266 .583 .824 .900
Model C 310 121 492 .336 .382 .402
Model D 729 367 726 .805 732 778
Null .050 .050 .056 .053 .051 .052
Family: Models A, B, and D
Uncensored MERT weights = (0, .5708, .5708); p* = .535
GO0 G20 G?? MERT3 MX3
Uncensored
Model A 951 .805 .892 .920 .925
Model B 815 .950 .592 897 915
Model D .879 .449 916 .828 .886
Null .048 .048 .052 .051 .049
Censored
Model A .868 747 787 .852 .839
Model B 874 941 577 .886 .909
Model D 714 .350 794 .683 734
Null .052 .052 .054 .053 .054
Family: Models A and D
Uncensored MERT weights = (.522, .522); p* = .837
GO0 G** MERT? MX2
Uncensored
Model A 951 .892 .940 942
Model D .873 917 918 912
Null .048 .052 .053 .051
Censored
Model A .882 .788 .864 .861
Model D 735 .801 .788 789
Null .049 .050 .050 .050

ified (Graubard and Korn, 1987). Gross (1981) and Podgor,
Gastwirth, and Mehta (1996) showed that conditions 1, 2, and
3 hold in this setting.

A summary of a simulation study that examined the rela-
tionship between the minimum correlation, p*, of the family
and powers of the MERT and MX procedures is given below.
For a 2 x 5 table with 10 subjects per group and using logit
links, we constructed 8 families each consisting of two alter-
native models with optimal test correlations .5, .6, .7, .75,
.8, .85, .9, and .95, respectivelil. The alternatives were cho-
sen so that the power of the optimal test would be near .80
{a = .05). We tabulated empirical power estimates for the

one-sided tests optimal for each of the alternative models as
well as the MERT and MX tests (based on 100,000 replica-
tions).

The simulation results are given in Table 2. Both efficiency
robust procedures protect against a potentially substantial
loss of power that would occur if an incorrect model was uti-
lized. For example, when p* = .6, the loss of power can reach
.40, while the powers of the MX and MERT tests were within
.08 and .11, respectively, of the power of the optimum pro-
cedure. When p* > .75, the results indicate that MX and
MERT have similar power properties. When p* < .5, the MX
has higher minimum power.



886

Biometrics, September 1999

Table 2
Empirical power estimates, ordered categorical data

Under model 1

Under model 2

Test optimal for

*

Test optimal for

p Model 1 Model 2 MERT MX Model 1 Model 2 MERT MX
.5 794 272 .688 726 .290 .803 .643 .706
.6 794 379 711 734 410 .802 .689 727
7 794 .502 733 .746 .541 792 729 736
75 794 .558 745 .749 .604 .791 748 746
8 794 613 755 764 .656 .788 758 755
.85 794 663 764 768 707 794 776 769
9 794 700 774 775 758 794 799 790
.95 7194 .748 782 781 772 794 792 .786

5. Conclusion

Because the asymptotic power properties of the MERT and
MX procedures depend on the null correlation matrix of the
optimal tests for the alternative models, the relationships we
found apply across many areas of applications. The correla-
tion matrix of the optimal statistics can guide one’s choice
of which robust procedure to use. With the increasing avail-
ability of powerful PCs, MX should be used, especially when
p" < .5. In situations where investigators are accustomed to
the normal form of a statistic, MERT should be useful.

A SAS IML program for estimating MERT and MX p-
values is available from the authors (BF).
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RESUME

La sélection d'une méthode unique d’analyse pose des pro-
blemes quand les données auraient pu étre générées par diffé-
rents modéles. Nous examinons les propriétés de deux tests
construits pour avoir une puissance élevée sur un ensemble de
modeles. Le premier, le MERT, utilise la combinaison linéaire
des statistiques optimales correspondant & chaque modele qui
maximise l'efficacité minimum. La seconde méthode, le MX,
utilise le maximum des statistiques optimales. Les deux ap-
proches conduisent & des procédures robustes en terme d’effi-
cacité pour I'analyse de données de survie et de données qual-
itatives ordonnées. Le choix entre les deux tests sera fait en
fonction des recommandations proposées.
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