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Abstract

The Cochran-Armitage trend test is commonly used as a
genotype-based test for candidate gene association. Cor-
responding to each underlying genetic model there is a
particular set of scores assigned to the genotypes that
maximizes its power. When the variance of the test sta-
tistic is known, the formulas for approximate power and
associated sample size are readily obtained. In practice,
however, the variance of the test statistic needs to be
estimated. We present formulas for the required sample
size to achieve a prespecified power that account for the
need to estimate the variance of the test statistic. When
the underlying genetic model is unknown one can incur a
substantial loss of power when a test suitable for one
mode of inheritance is used where another mode is the
true one. Thus, tests having good power properties rela-
tive to the optimal tests for each model are useful. These
tests are called efficiency robust and we study two of

them: the maximin efficiency robust test is a linear com-
bination of the standardized optimal tests that has high
efficiency and the MAX test, the maximum of the stan-
dardized optimal tests. Simulation results of the robust-
ness of these two tests indicate that the more computa-

tionally involved MAX test is preferable.
Copyright© 2002 S. Karger AG, Basel

Introduction

In case-control studies evaluating association between
a candidate allele and a disease, allele-based tests and
genotype-based tests are equivalent when Hardy-Wein-
berg equilibrium (HWE) holds [1]. However, when HWE
is not satisfied, Sasieni [1] showed that the allele-based
test is invalid and that the genotype-based Cochran-Armi-
tage (CA) trend test [2, 3] can be used. The CA trend test
utilizes a set of scores that can be obtained as an efficient
score test for a logistic regression [4]. Hence it is a locally
optimal test for the given set of scores. The statistical
properties of the optimal test for the additive model were
investigated by Slager and Schaid [5].
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In applications, the theoretical variance (63) of the test
statistic may not be known and is replaced by a consistent
estimate under the null hypothesis, When the alternative
is true, however, the estimated standard deviation con-
verges to o*, which may differ from op. Therefore, power
and sample size calculations should be based on o*. We
present formulas to approximate the sample size needed
to achieve a desired power that account for the estimation
of the variance of the test statistic. We demonstrate that
use of the recessive scores for the recessive model instead
of the test optimal for additive model typically leads to
noticeably smaller required sample sizes. Only when the
allele frequency is high is there a substantial difference
between the optimal tests for dominant and additive
models when the underlying model of inheritance is dom-
inant. Therefore we apply results from efficiency robust-
ness theory [6-10] to obtain tests that have relatively high
power for any of the three commonly used genetic models.
The maximin efficiency robust test (MERT) is a linear
combination of the tests optimal for the recessive and
dominant models. The MAX (the maximum of the stan-
dardized version of the three optimal tests) is generally
more powerful but is also computationally more inten-
sive.

Cochran-Armitage Trend Test

. The data available from a case-control study are repre-
sented in table 1, where A4 is a high risk candidate allele
and a is any of the other alleles. In table 1, R and S are
sizes of random samples of case and control, respectively.
Assume that (ry, 7y, 7;) follows a trinomial distribution
with probabilities for genotypes aa, a4 and A4 equal to p,
p1 and p,, respectively, and that (so, 5, $2) follows a tri-
nomial distribution with probabilities ¢g, ¢; and ¢,. The
null hypothesis of no association can be written as Hy: p; =
gifori=0,1,2.

Define the penetrances of aa, a4 and A4 as f;, fiand f,
respectively. Let K denote the disease prevalence and y; =
filfoand &= (1 - f;)/(1 — fo) for i = 1, 2 be genotype relative
risks. The population genotype probabilities will be de-
noted by gy = PR(aa), g1 = Pr(ad), g = Pr(44) and K =
Z; figi. In the above notation, p; and ¢; can be expressed
as
(A-fi)g_ @’ 0

1-K %8¢
where ¥ = dy = 1. Hence, the null hypothesis, p; = g; for i =
0,1,2,isequivalent to Hy: y1 =y = L (i.e,, fo=f; = f»). The

andg; =
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Table 1. Genotype distribution

sian
Cases To n 2 R
Controls s S $2 S
Total ng ny ) N

alternative hypothesis H, can be either > y= lory» =
yi>1.

To test Hy against H, using CA trend test, a set of
scores x = (xp, X, xp) must be assigned to genotypes (aa,
aA, AA). From Sasieni [1], x = (0, 1, 2) is assigned for the
additive model (35 =29, ~ 1), x=(0, 1, 1) for the dominant
model (y; = ), and x = (0, 0, 1) for the recessive model
(71 = 1). Since the multiplicative model (32 = 73) and the
additive model are asymptotically equivalent as (1, )
approaches the null value (1, 1), this model is not studied
in detail so one can also use x = (0, 1, 2) for it. Given the
socre x, the CA trend test can be written as

o U
' varg(U)]2

where

U:

z[—

2
2 X (Sr;— Rs)
i=0

and

2

vary,(U) = Noj = R—]\f Lé xiqi- (1

Oxiqi>2] . @

In practice, the ¢; in (2) may not be known and oy is esti-
mated from the data by representing the g; by n;/N. This
yields

2

\ o RST. <
vt (V)= NG = | N 3 sni- (

2
Xi%') ] . (3)
0
It can be shown that under the null hypothesis ; is a con-
sistent estimator for oy, i.e., 6y converges to oy in proba-
bility., Denote U/[VérH0< U )]”2 by Zr. For a two-sided

test, the null hypothesis is rejected if | Z7|> z; _ o2 where z,,
is the pth percentile of a standard normal distribution and
a is the level of significance.
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Power and Sample Size

Denote E(U) = Ny, and vary (U) = No2. From Slager
and Schaid [5],

#a=%l§ xipi~q),

Under Hy: p; = q;, o reduces to o3 given by (2).

Usually, the sample size needed to achieve power
100(1 - B)% for a level « test is calculated when oy is
known. The corresponding power and sample size for the
trend tests are [5]:

Power* = Pry, (| 277> z{ _an)

- (—Zl—a/zao—Nl/z,Ua> -0 <Zl-a/20‘0—N”2/~ta> ’
Oy [e74

&)

N = (Zl —u/wt;t *21-p% -ﬂ"a>2, (6)
a

where @ is the cumulative distribution function of the
standard normal. In (5) and (6), the values of p; and g;can
be calculated using (1).

In practice oy often is unknown so Zy, which utilizes
the estimator & (3), is the statistic applied to the data.
Analogs for formulas (5) and (6) will now be given. First,
note that, under the alternative hypothesis, 6y converges
to (6% + u2)"/2 in probability (see Appendix, A), where

5 2 2 2 2
i |2 e (2 oo |5 [ £ 0- (T na )]
Hence

Power = Pry, (|Z7|>z1 - o)

<—Zl_g/2> +PrH,,< >Zl—a/2>

Ty (*A
TANI2 8y

=Pr < v <-z >
A NG 4 gy~

N2 60

+ PI‘Ha (——U‘i—>21 —a/2)
NG + 12172

- <‘Zl _ (3G + )12~ N2 ﬂa)
Oy

-0 (Zl—w2(5,21+#¢21)1/2_N1/2/1a) o

o
Thus the required sample size is
N <Z1 (& + 1) + 2y -/3%)2
Hy

WhenR =S, &2 = o2, and using Taylor series expansion,
(7) can be approximated by

(7
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To illustrate the difference in the sample sizes obtained
from formulas (6) and (7), we consider the same example
given in Slager and Schaid [5]. We assume that HWE
holds, R =S, and that the prevalence of a trait is K = 0.01
with 1= 2, 7, = 4 and p = 0.05. Using (2) and (4), we
obtain u, = 0.02285, 6% = 0.02375 and o;=0.03331 (2>
o). If we assume o3 = 0.02375 is known and use formula
(6), the sample size for two-sided test with & = 0.05 and
power 80% is N* = 398. However, when an estimator &y is
used, (7) or (8) yield N = 506. The sample sizes in table 2 of
Slager and Schaid [5] and their simulations are consistent
with formula (7) or (8), rather than (6), and are reliable for
planning a study. Further discussion of the accuracy of the
approximation (8) is given in the Appendix, B.

Slager and Schaid [5] also calculated the sample sizes
of the CA trend test using the additive scores x = (0, 1, 2)
for each of the additive, recessive, multiplicative, and
dominant models. Since the optimal scores for the reces-
sive and dominant models are (0, 0, 1) and (0, 1, 1),
respectively, we recalculate the sample sizes N using the
sets of scores x assigned to recessive and dominant mod-
els. The results are presented in tables 2 and 3 along the
corresponding sample sizes for the additive scores given
in Slager and Schaid [5].

For low-prevalence alleles (p < 0.1) the loss of power
when the additive test is used but the disease is recessive is
substantial (table 2). For the dominant model, however,
the increased power of the optimal test is small in this situ-
ation. This is not surprising as the dominant model essen-
tially reduces to the additive one when p is small [8).

+zi_aZi-ant Zi_p). ®

Robust Tests for Candidate Gene Associations

To analyze case-control data (table 1), one can use one
of the three trend tests that are optimal for the dominant,
additive or recessive models, respectively. If the mode of
inheritance is known, the choice of test is clear. In most
circumstances, however, the mode is not known. The re-
sults in tables 2 and 3 demonstrated that there may be a
substantial loss of power when an optimal test for one
model is used when the data follow a different model.
This occurs primarily when the recessive model is correct.
Only when the allele frequency is high (e.g., p>0.25) does
this situation arise when the dominant model applies. We
consider the optimal tests with their variances estimated
from the data using (3) and construct two different robust
procedures.

Freidlin/Zheng/Li/Gastwirth
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Table 2. Sample sizes N required by the additive (ADD) and reces-
sive (REC) score tests to achieve 80% power (a = 0.05) when the
recessive model holds

Table 3. Sample sizes N required by the additive (ADD) and domi-
nant (DOM) score tests to achieve 80% power (¢ = 0.05) when the
dominant model holds

2 0.01 0.01 16,000,000 460,089 2 0.01 0.01 2,408 2,396
0.10 18,881 4,684 0.10 367 347

0.50 413 298 0.50 691 422

0.10 0.01 13,000,000 367,396 0.10 0.01 1,926 1,916

0.10 15,483 3,743 0.10 298 281

0.50 339 243 0.50 576 356

3 0.01 0.01 3,960,000 153,113 3 0.01 0.01 811 807
0.10 5,170 1,568 0.10 136 128

0.50 151 113 0.50 337 196

0.10 0.01 3,270,000 120,118 0.10 0.01 638 635

0.10 4,212 1,232 0.10 109 103

0.50 124 92 0.50 282 167

ADD scores x = (0, 1, 2); REC scores x = (0,0, 1).

ADD scores x = (0, 1, 2); DOM scores x = (0, 1, 1).

Consider a general case, a set of K alternative models
and the corresponding optimal test statistics Z;, i = 1,..., K.
Given a family (C) of consistent tests with asymptotically
normal distributions that includes Z; for all the models,
the one achieving maximin efficiency relative to the other
tests in the family is called efficiency robust. Originally,
linear combinations of the various optimal test statistics
were considered and we call the robust linear combina-
tion the MERT. With the advent of the computer era, one
can also consider non-linear tests. The maximum of sever-
al standardized optimum tests often has higher maximin
efficiency than the simpler MERT. Efficiency robust pro-
cedures [6, 10] depend on the null correlation of the opti-
mal test statistics as the asymptotic relative efficiency
(ARE) of Z; relative to Z; when Z; is optimal is eff(Z;,Z)) =
p%,-, where py = corp(Z;, Zj). Thus MERT, Zygrr, a linear
combination of several of the optimum test statistics,
achieves the

sup inf eff(Z, Z)),
ZeCl=i<K
where Z; is the optimal test for the true model, and Z
ranges over the family (C) of tests that contains the opti-
mal ones for the three models. The second robust test is
the maximum of the optimal statistics, max; < ; < x(£;), or
MAX. Unfortunately, the asymptotic distribution of
MAX is not available. Its power and sample size are based
on simulation. Freidlin et al. {9] showed that relative per-

Trend Tests for Case-Control Studies of
Genetic Markers

formance of MERT and MAX depends on the minimum
correlation coefficient, p* = min; < ;; < x pj. When p* <
0.6, MAX is more powerful than ZyggT, but when p* =
0.7, then two robust tests are virtually equivalent in pow-
er. For comparison, we include Zygrt and MAX in the
simulation.

Henceforth we focus on the optimal tests for domi-
nant, additive and recessive models denoted by Zpowm,
Zapp and Zrec, respectively (note that the corresponding
scores are xpom = (0, 1, 1), xapp = (0, 1, 2), Xrec = (0, 0,
). In the Appendix, C, we give the null correlation of the
tests and apply the general MERT theory to show that

p* = cory, (Zpom, Zrec) and

Zpom + ZrEC ©)
(2 [1 + cory, (Zpom, Zrec)l}'"?

ZMERT =

In large samples Zyrrt has a standard normal distribu-
tion and its minimum efficiency for the set of genetic
models considered is

[1 + cora, (Zpom, Zrec))/2. (10)

To assess the robustness of the various tests under the
different genetic models, we simulated case-control asso-
ciation studies where each group had 200 (500) members.
We chose a low (moderate) prevalence, p, of candidate
allele 0.1 (0.3). The variance of each optimal statistic was
estimated from (3). The correlations of optimal tests are
presented in table 4.

Hum Hered 2002;53:146-152 149




Table 4. Average correlations of optimal Table 8. p Values for various tests for the
test statistics (based on 10,000 replications) data in table 7
 Zoow  Zwn  Zwe Test . pVale
5 p=0. 1000 0974  0.200 Zpow 0.240
1.000 0.419 ZapD 0.044
| 1.000 ZrEC 0.014
S Zuert (DOM, ADD, REC) 0.041
p=0.3 1000 ?'ggg 8'222 MAX (DOM, ADD, REC) 0.031
: 1'000 Zyert (ADD, REC) 0.020
’ MAX (ADD, REC) 0.021
Table 5. Empirical power for optimal and robust tests (p = 0.1, based Notice that correlations of the standardized optimum
on 10,000 replications) tests depend on the prevalence, as both robust tests are

functions of this multivariate distribution their distribu-

 Zabp - Zge L e ME®  tonswill also depend on p. When the correlations are esti-
0.049  0.056 0045 0046 mated from the data and used in the formula for the
0.785  0.145 0619 0.729  MERT or the simulation of the distribution of the MAX,
0.804 0256 0716 0744  the effect of the prevalence is accounted for. The simula-
0.362 0800 0575  0.667 tion results confirm that the minimum correlation, p*, of
500 Null 0.052  0.053 0.051 0.052 0.049 all three optimal tests is cory, (Zpom, Zrec), which is
DOM 0806  0.785  0.134 0612 0730 gpout 0.200 (0.306) for p = 0.1 (p = 0.3). This indicates
ADD 0306 0817 0261 0727  0.759 that the MAX should be the more robust test.

REC 0.162 0.357 0.794 0.614 0.714 . . .
The simulated power of the tests are given in table 5
(p=0.1) and table 6 (p = 0.3). When p = 0.3, the levels of
tests were quite close to their nominal levels under H.
When p = 0.1, however, the robust tests tended to be con-

Table 6. Empirical power for optimal and robust tests (p = 0.3, based servative (slightly below 0 05) when R = S = 200. In all
on 10,000 replications) ’ :

wepHgbrAdoo Aq patostoid eq Aews fensrepy -

g‘ cases the penetrances were selected so that the optimal
=~ test for a given model had power near 0.80. Even when
g | Ll : i : R =.5=500, the power of Zpom (Zrec) when the recessive
pas 200 Null 0.052  0.051  0.046 0.050  (dominant) model was true was quite small, <0.21. On the
3 DOM 0793 0;;(1) 8411% 024112 other hand, when R = S = 500, Zpp had a power 0.36
bl ADD — 0.73 0. . 0.744 (0.54) for recessive traits when p = 0.1 (0.3). In contrast,
| REC 0.219 0.550 0.802 0.729 .

the MAX had a power > 0.70, while Zygrt had a power
500 Null 0.051  0.050  0.049 0.050 " 50,60 for all models. Thus, both robust methods provide
DOM 0.805 0.720 0.180 0.725 tecti inst del taint d d

ADD 0776 0827 0507 0781  DProtection against model uncertainty, and we recommen

REC 0208 0540  0.795 0.720  the MAX for general use.

An Example
Table 7. Melanoma data from Shahbazi et .
al. [11]: in situ vs. control To illustrate the methods, we reanalyze data from
S — Shahbazi et al. [11] showing an association between a
AL AG GG ~Total variant of the epidermal growth factor (EGF) gene and
: — malignant melanoma. Those investigators examined a
i gloi‘tt;‘()l 32 43 ;8 ;g candidate allele (G), which produces more EGF than the
| Total 38 55 30 123 alternative allele (A). The data for a]l controls and in situ
i cases are presented in table 7.

150 Hum Hered 2002;53:146-152 Freidlin/Zheng/Li/Gastwirth
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If we have no prior knowledge of the underlying genet-
ic mechanism we would use a robust test based on the
three optimal tests Zpowm, Zapp and Zrgc. If prior studies
indicated that the mode of inheritance was either additive
or recessive, then we would just use a robust test based on
Zapp and Zrece. The estimated correlation matrix ob-
tained from the correlations in the Appendix, C, using the
genotype frequencies of the cases and controls combined,
Were Cory, (ZDOM; ZADD) = 0843, COTH, (ZDOM’ ZREC) =
0.380 and cory, (Zapp, Zrec) = 0.817. The results of the
individual optimal tests and the robust procedures are
given in table 8. Notice that with the exception of the opti-
mal test for the dominant model all the tests are signifi-
cant at the 0.05 level. When all three models are plausible,
the MAX test yields a somewhat lower p value than the
MERT. This is consistent with the guidelines indicating
that the MAX test is more powerful than the MERT when
the minimum correlation is < 0.7. When one can ¢limi-
nate the dominant model based on prior genetic knowl-
edge, the p values of both robust tests are much closer as
the correlation of the tests for additive and recessive mod-
¢ls is about 0.8.

Discussion

When calculating sample sizes based on formulas simi-
lar to (6), which assumes that op is known, one needs
implicitly to account for the fact that op is estimated by
dp. Under the alternative, 6%) converges to 5;21 + uﬁ, which
may exceed o3. Thus, formulas (7) or (8) should be used to
determine the sample size.

If one knows the mode of inheritance, one should use
the optimum test for that model. If the underlying genetic
model is not known, then one should use a robust test.
Usually, the MAX will be superior to the simpler MERT.
However, in situations when the plausible set of models is
smaller, e.g., a recessive model is not plausible, one can
use the simpler method. Both robust procedures appear to
provide more protection against an incorrect choice of
model than using the additive scores.

As the sample sizes to achieve prespecified type I and
type II errors are calculated under an assumed alternative
and use of the corresponding optimal test, when the inves-
tigator does not know the specific model underlying the
data, a robust test should be used. The sample sizes deter-
mined by using the optimal test for a particular model are
too small if a different model holds. Hence, they should be
increased to allow for the loss of power incurred by model
uncertainty. The use of an efficiency robust method helps

Trend Tests for Case-Control Studies of
Genetic Markers

to minimize the worst loss of power or needed increase in
sample size over the range of plausible models.
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Appendix

A. Prove that & converges to & + ji2 in probability under H,

Assume R = ¢N and S' = (1 —¢)N where ¢ €(0, 1). Hence, for i =0,
1,2,a8 N = oo, n;/N = @p; + (1 — p)g; in probability. Therefore, under
H,, we obtain

&—e(l-09) {Z X3 (epi+ (1 - 9)a) - [E x; (gpi+ (1 - co)q,-)]z}
=P (- Lxipito(l-9P Lxiai-¢*(1-9) (Zx,-p;>2
-p(1- 0P (E xiqi)z_ 2¢7 (1 - ¢)? (Z XiPz‘) (Z xi‘]i)

=&+ (-of | Ztoi-a)| = G+ s

B. Accuracy of expression (8)

Let R =S. Under H,, if 4% << 2, then, by Taylor series expansion,
(7) can be approximated by (8). The error of this approximation can
be written as

S PR (i—)2 + Ol 3, (11)

where O((u,/0,)*) is the order (u,/c,)*. Note that if we replace z; _ g
and z; _ o by 0.842 (power = 80%) and 1.96 (a = 0.05), respectively,
then the absolute value of the error term in (11) is < 1 if 12/ 0% <2.424.
When the inbreeding coefficient [12, 13] F = 0 or when there is
inbreeding (F = 0.10), we calculate the values of 42/ o2 for three differ-
ent genetic models with X = 0.01, 0.10, p = 0.01, 0.10, 0.50, R = S,
and the ¥, which were considered in [5]. The largest value of u%/o2 is
0.0912, corresponding to the recessive model with y, = 3, K= 0.10
and p = 0.50 and F = 0. Thus (8) is a very good approximation for
calculating the required sample size when oy is not known.

From (6) and (7), if R = S and o2 + 122 = 63, then N* = N. However,
it can be shown (results not presented here) that, under HWE and a
recessive model (y = 1 and 6, = 1) with p < 0.50, 0,> oy when 1, <9
and fy + f» < 1. That is, N > N*. For the dominant model (y; =, =¥
and & = & =8), A= y6> | when fy + £, <1. Under HWE, it can be
shown (results not presented here) that, if A=2 (and A = 3), o, > op if
and only if p < 0.235 (and p < 0.204).

Hum Hered 2002;53:146-152 151
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C. The extreme pair and the MERT

For a family of three optimal tests, often the MERT is a linear
combination of the two optimal tests for the extreme members of the
family, i.e., the tests with the minimum correlation. Two conditions
need to be satisfied [6, 8]: (i) p* = 0, and (ii) p* + 1 must be less than
the sum of the other two correlations. We now show that for the fami-
ly of optimal test statistics Zpom, Zapp and Zrge and the corre-
sponding Upom, Uapp and Urgc [4], ZyerT can be expressed as (9)
with ARE given by (10), where ZygrT asymptotically follows a stan-
dard normal distribution.

Since, under Hy, (7o, r1, r2) and (so, S, $) follow the same trinom-
ial distribution, we obtain:

corg(Zpom, Zapp) = corg(Upom, Uapp)

- APy + 2p0)
[p2(1 = p)12[(p1 + 22)p0 + (01 + 2po)pa] V2

corg(Zapp, Zrec) = cory,(Uapp, Urec)

_ po(p1 + 2p2)
[po( L = p)IY[(p1 + 2p2)p0 + (01 + 2p0)p2] 2

corg(Zpowm, Zrec) = corg,(Upom, Urec)

- DoP2 '
[po(1 = po)12[pA1 - p2)]12

Using the above expressions and routine algebra, one can show that

corg(Upom, Urec) < corz(Upom, Uapp),
corg,(Upom, Urec) < corg(Uspp, Urec),

which implies (i).
To show (i), let F be inbreeding coefficient. Under the null
hypothesis, p; = ¢; = g, [ = 0, 1, 2. Hence, we can write py = gF +
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I(p) = p + pg(1 - F). Hence (ii) is equivalent to

2p[po]'” 4 24lp]'” [pop2] 2 }
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+4pg(1 -~ F)h = 0. (13)

where, after some algebra, 2ppo — g(1 + P)(p) = pg[(1 - FY2q - (1 - F)]
and 2gKp) - p(1 + F)py = pg[2 - (1 + F)/F + (1 - F)2g]. Substituting the
above two terms into (13), we obtain that (13) is equivalent to

4pq(1 - )b + 2p%¢* f(F, p) = 0,

where
SE p)=[1+p(1-F)(1-Fq-(1-F)
+[F+(1-Fpll2-(1 - FF+(1 - Fyq]
=F32-4p+2ph) - FX2 - 8p + 6p*) + F(2 - 6p + 6p%).

Hence, to show (ii), it remains to show f(F, p) = 0forO0 <= F,p < 1.
Note that, forany 0 < F < 1, (3%/3p?) f(F, p) = -4(1 - F)? < 0. Thus
AF, p) is concave with respect to p, this is, f(F, p) = min | f(F, 0),
S(F, D}, where f(F,0)=2F(F2-F+1) = Oand f(F, 1) =2F = 0. This
shows that (i1) holds.

= [2pg(1 + F)]2 {1 +
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