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1. Introduction

1.1. Overview

Point process data arise in medical research when a clinically important event may re-
cur over a period of observation. Examples are ubiquitous and arise in settings such as
oncology (Gail et al., 1980; Byar et al., 1986; Hortobagyi et al., 1996), cerebrovascu-
lar disease (Hobson et al., 1993; OASIS, 1997), osteoporosis (Riggs et al., 1990), and
epilepsy (Albert, 1991). Interest typically lies in understanding features of the event
process such as intensity, rate, or mean functions, as well as related group differences
and covariate effects. The method of analysis for point process data is naturally driven
by the feature of interest. Andersen et al. (1993) focus on intensity-based methods for
counting processes, while others emphasize models with a random effect formulation
(Thall, 1988; Abu-Libdeh et al., 1990; Thall and Vail, 1990), marginal methods for
multivariate survival data (Wei et al., 1989), or marginal models based on rate func-
tions (Lawless and Nadeau, 1995). Interpretation and fit are key factors which help
guide the analysis approach for a given problem, and the merits of the various strategies
have been actively discussed in the literature (Lawless, 1995; Wei and Glidden, 1997,
Cook and Lawless, 1997a; Oakes, 1997; Therneau and Hamilton, 1997; Cook and Law-
less, 2002). Often marginal rate functions serve as a meaningful basis for inference and
these will serve as the focus here.

Frequently when subjects are at risk for recurrent events, they are also at risk for a
so-called terminal event which precludes the occurrence of subsequent events. Death,
for example, is a terminal event for any point process generated by a chronic health con-
dition. The presence of a terminal event with point process data raises challenges which
must be addressed if interest lies in the mean function (Cook and Lawless, 1997b), the
cumulative distribution function for the number of events over a fixed interval or a life-
time (Strawderman, 2000), or other aspects of the process. The purpose of this article is
to describe methods of analysis for point process data in the presence of terminal events
while emphasizing connections with methodology for the competing risks problem in
survival data.
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The remainder of the paper is organized as follows. In the next section methods for
the analysis of time to event data subject to a competing risk are reviewed. Methods
for the analysis of point processes based on rate functions are then reviewed, along
with some simple methods for dealing with terminal events. An application to a study
of breast cancer patients with bone metastases (Hortobagyi et al., 1998) illustrates the
various procedures. The article concludes with some general remarks.

1.2. Time to event data and competing risks

Let the random variable D denote the time from a well defined origin to death and let
C denote a right censoring time. Assume that there is a maximum period of observation
of duration C* so that C < C*. The survival function for the time to death of a generic
individual is denoted by S (t) =Pr(D > t), and Pr(C < t) = 1 — K(¢) is the cumu-
lative distribution function for the censoring time (i.e., K(t) = P(C 2 t) for C < C*).
The hazard function for death is defined as

hD(t)= lim Pr{D <t+ At|D >t}
At]0 At

I

and the hazard for censoring, A€ (¢) is similarly defined with D replaced by C. Due
to right censoring we only observe X = D A C and AP = I(D < C), where x Ay =
min(x, y) and I(-) is an indicator function. Here X is the total duration of observation
and AP = 1 if death is observed and AP = 0 otherwise. In the one sample problem
with no covariates, the assumption of independent right censoring is satisfied if

. P(D<t4+At|D=2t, C21)
lim

=P,
At}0 At ®

and this is assumed to hold in what follows.

For a sample of n independent and identically distributed individuals, let D;, C;,
X; and AiD denote the corresponding quantities for individual i, i = 1,...,n. The
observed data may then be represented by {(X;, AID ), i =1,...,n}. To estimate the
survival function, SP(¢), we define the counting process NP () = API(D; < t) so
that dNP (1) = lima, o(NP (¢t + At™) — NP (t7)) = 1 if subject i dies at time ¢ and
dNP(t) = 0 otherwise, i = 1,...,n. The “at risk” function ¥ (t) == I (¢ < X;) indi-
cates whether a subject is observed to be at risk for death at time ¢, i = 1,...,n. If
0 <t <--- <ty are m distinct times of death, the Kaplan-Meier estimate for S (¢) is
given by

Py =[]{1-r )}, (1.1)

<t

where AP (t) = ANP(¢)/ Y2 (¢) is the estimated hazard, AN () = SI A YP@ANP @),
and YP () =Y 7_, YP () (Kalbfleisch and Prentice, 1980).

Suppose now that interest lies in the occurrence of an event associated with morbid-
ity, which may or may not occur prior to death. This may be, for example, the time to
the progression of disease, or the time to some other clinically important event. Let the
time of this event be denoted V; for individual i and let T; = min(V;, D)), i =1,...,n.



Marginal analysis of point processes with competing risks 351

In this setting, since death precludes the occurrence of the morbidity event, a com-
peting risk problem arises for which, in the absence of censoring, we observe only
(T;, D;) and I(V; £ Dy) for individual i, i =1, ..., n. More generally with indepen-
dent right censoring, let A IV = I (V; < min(D;, C;)) be the indicator that the morbidity
event was observed to occur, let Niv =4 ,V I(V; £ t) be the counting process for
the morbidity event, and let the at risk indicator for the morbidity event be denoted
YY (1) = 1¢ <min(T;, C:)).
The function

V) = tim Pi{T <t+At,A) =1|T >t}
At}0 At

is called the cause-specific hazard for the morbidity event and may be interpreted as
the instantaneous probability of the morbidity event occurring at time ¢ given neither it
nor death have occurred prior to time ¢. A nonparametric estimate of 4V (¢) is given by
hV(H) =dNY (1)/YY (1), where ANY (1) = Y 7_ YV () dNY (1), YV (1) = 320 1Y ().
While this has a similar form to the estimated hazard for death it is important to note that
it cannot be used to construct a Kaplan—Meier type estimate of a distribution function
for the time to the morbidity event using a formula such as (1.1). Instead if interest lies
in estimating the proportion of subjects who have experienced the morbidity event by

time ¢, one should focus on the cumulative incidence function

t
VO =i(1 <1, 47 =1) = [ 4005 ) du. (1.2)
0

Note that (1.2) is slightly different than the usual expression provided for the cumulative
incidence function in discussions of the competing risk problem. Typically competing
risks are discussed in the context of problems where all events preclude the occurrence
of other events as is the case in the analysis of cause of death data. Here, only death
precludes the occurrence of the morbidity event (not vice versa) and so we use SP (u)
in (1.2) instead of the survivor function for 7 = min(V, D). The cumulative incidence
function may be estimated nonparametrically by

g =Pr(T<t, 47 =1)=) 1" @)S°@). (1.3)

et

Consider a two-sample problem in which the hazard for death and the cause-specific
hazard for the morbidity event in group j at time ¢ are h? (#) and h}/(t), respectively,
J =1,2. Suppose n; subjects are initially in group j, and the ith individual in group
J has counting processes N ﬁ (t) and N j‘; (t) for death and the morbidity event, respec-

tively. The corresponding at risk indicators are denoted ¥ ﬁ (t)and Y j‘;

The standard class of statistics for testing Hy: h{) = hg (1) is

(t), respectively.

C*
WP w){hP ) — P )} du, (1.4)
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vyherle ;;j?(t) =dNP0/YP @), dNP@0) =312 YR () AND®), YLy =312 YR ),
] = ) k]

YPoyvP@aq)
YD) ’

and Y2 (1) = YP(+) + Y2 (¢). The function a(t) is a fixed (predictable) weight function
with a(t) = 1 giving the usual log-rank statistic. An analogous test of Hy: hY(t) =
hg (t) could be carried out to assess differences between groups in the cause specific
hazard function. For this test, however, the statistics forming the basis for this test are
not directly linked to observable quantities. To address this, it may be desirable to test
Hy: ¥r((t) = ¥r2(t) where v;(t) denotes the cumulative incidence function (1.2) for
subjects in group j, j =1,2.

Gray (1988) proposes a two-sample test of the equality of cumulative incidence func-
tions based on the statistic

C*

WY @{[1 -1 @] dd1@) - [1 - 2]~ ddaw)}, (1.5)

wPl) =

where ¥ j () is the estimate of y; (u) obtained by (1.3) and WYV (u) is a weight function.
For a suitably chosen WY (1), in the absence of the competing risk problem, the familiar
log-rank test is obtained from this statistic. More generally, however, tests of this sort are
appealing as they are based on observable quantities and have a simple interpretation.

2. Rate functions for point processes

Let N;(t) denote a right continuous counting process which records the number of
events experienced by subject i over the interval (0,¢] and let N; (¢t + At™) — N;(t7)
denote the number of events occurring over the interval [¢,¢t + At). We let dN;(¢) =
lima; o(N( + At™) — N(t7)) =1 if an event occurs at time ¢ for subject i, and
dN;(t) = 0 otherwise, i = 1,...,n. Consider the analysis of point process data in
the setting where there is no terminal event, observation is planned over the inter-
val (0, C*], but subjects may be censored at an earlier time denoted by C; for sub-
jecti,i=1,...,n. If we take D; =oo thenhere Y;(t) = I(t < X;) =1(t < C;). Let
HiN (s) = {N;(u); 0 < u < s} be the history of the event process at time s for subject i,
which represents the times for all of their events occurring over (0, s).

The intensity function for the event process for subject i is given by

Pr{Ni(s + As™) — Ni(s™) = 1| HY (s)}
As ’

which can also be shown to satisfy A(s | HiN (s))ds = E(dN;(s) | HN (s)). Note that
the history of the process may be expanded to include internal covariates and hence
intensity based methods provide a rich framework which facilitates detailed examina-
tion of a wide variety of aspects of the process under study (Lawless, 1995). Use of
intensity based methods, however, requires detailed modeling of sometimes complex

A1) =ty
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processes and frequently questions of primary interest may be addressed based on mar-
ginal features through the use of rate functions. The rate function r(s) is simply given
by the unconditional instantaneous probability of an event occurring at time s satisfying
r(s)ds = E(AN(s)).

Under a Poisson model, the intensity and rate functions are the same since the incre-
ments in the counts in disjoint intervals are independent. For the one sample problem,
the Poisson score equation for estimation of the rate function at s is

3" i) {dNi(s) — r(s)ds} =0. (2.1)

i=1

Provided E(dN;(s) | Yi(s)) = r(s)ds (i.e., the distribution of C; is independent of
{N;(u), 0 < u}), the left-hand side is an unbiased estimating function and the solution
F(s)ds =3 7 Yi(s)dN;(s)/ 37_, Yi(5) is an unbiased estimate of r(s) ds. Therefore,
the solution to (2.1) is the robust Nelson—Aalen estimate of the rate function (Ander-
sen et al., 1993) and the quantity E(t) = fo F(s) ds is an unbiased estimate of the mean
R(t) = E(N (1)), the expected number of events over (0, #]. Robust variance estimates
may be obtained for R (¢) for a wide class of distributions to facilitate interval estimation
(Lawless and Nadeau, 1995) and extensions to deal with regression problems are also
possible.

Consider now two groups of subjects with the counting process {N;; (u); 0 < u <t}
and an independent at risk indicator Y j; () for the ith subjectin group j,i=1,...,n;,
and rate and mean functions r;(¢) and R;(t) = E{N;;(#)}, respectively, j = 1,2. To
develop tests of Hy: r1(t) = r2(t), we may proceed in a manner analogous to that used
to develop tests for intensity functions in modulated Poisson processes (e.g., Andersen
et al., 1993, Section 5.2). A family of test statistics mentioned by Lawless and Nadeau
(1995) is based on

C*
U= | W ) {#1(u) — F2(u)} du, (2.2)

where

_ Y1.(w)Y> (wa(u)

W(u) Y @

and a(u) is a fixed (predictable) weight function. Again, if a(u) is a constant a log rank
type statistic results. A variance estimate for (2.2), var(U), which is robust to departures
from Poisson assumptions (e.g., it is valid for mixed or clustered Poisson processes,
mixed renewal processes, self-exciting point processes, etc.) may readily be obtained
(Cook et al., 1996). Under mild regularity conditions, the standardized form U? /¥atr(U)
asymptotically follows a X(21) distribution under Hy for a wide class of underlying point
processes and hence large observed values of this statistic provide evidence against the
null hypothesis.
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3. Point processes with terminal events

3.1. Joint models

Frequently while subjects are at risk for a recurrent event, they are at risk for a so-
called terminal event which precludes the occurrence of subsequent recurrent events.
This is similar in spirit to the competing risk problem in survival analysis in which death
precludes the subsequent occurrence of another type of event (e.g., ar event associated
with morbidity or, in the more classical setting, death from another cause). For example,
consider a study of kidney transplant recipients. Graft rejection episodes are transient
events in which there are physiological indications of difficulties with acceptance of the
transplanted organ. By definition they respond to treatment and are less than 24 hours in
duration, but they may occur repeatedly over time. Interest often lies in preventing these
episodes since they are associated with morbidity as well as health resource utilization
(Cole et al., 1994). While subjects are at risk for rejection episodes, they are also at risk
for total graft rejection which in turn precludes the occurrence of subsequent episodes
(Cook and Lawless, 1997b). As another example, patients with breast. cancer and bone
metastases have a strong risk of recurrent skeletal complications. Again it is of interest
to prevent these complications from occurring due to their adverse effect on quality of
life and the cost in treating them. Since these types of patients are at an advanced stage
of disease they are also at high risk of death, and again death precludes the occurrence
of subsequent skeletal complications. For concreteness in what follows, consider the
termination time as a time of death.

Let D; denote the time of death as before. One may consider {N (1), 0 <u < D; D}
as a bivariate process with the first component representing the point process and the
second the time of death. Let H¥ (s) = {N(u), 0 < u < s} denote the history of the
point process and HP(s) = {I(D > u), 0 <u < s). In general the joint process will
not be fully observable due to right censoring at C. In general one can have different
censoring times for the point process and the survival time but we do not consider
this here for simplicity. Throughout, we assume a censoring mechanism in which C is
independent of {N(#), 0 <u < D; Dj}.

Intensity-based joint models for the recurrent and terminal events are specified by
intensity functions for the terminal event and recurrent event processes of the form

AP (| HY (1), HP (1))

Pr(D <t+ At |HV(@), HP(t), D > 1)

= lim, At ’ G
As | HY(s), HP(s5))
-y _ -y — N D
_ lm Pr(N(s + As™) = N(s™) = 1| HV(s), HP(s), D>s)' 32)
As |0 As

Here (3.1) is the intensity for death, which may depend on the history of the point
process, and (3.2) is the intensity of the recurrent event process which makes explicit
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the requirement that subjects must not have experienced their terminal eveat (i.e., died)
for the recurrent event to occur.

There are a variety of ways of forming such joint models. Perhaps the rnost familiar
one is to consider a marginal model for the event process and a Cox regression model
for the terminal event time featuring internal time-dependent covariates summarizing
the history of the recurrent event process. This approach is in the spirit of a “selection
model” as defined by Little (1995). Alternatively, one can induce association between
the event and terminal event processes via shared or correlated random effects. These
approaches are not particularly appealing when primary interest lies in characterizing
the recurrent event process. In this setting the following “pattern-mixture” approach is
more natural (Little, 1995).

In order to discuss inferential issues surrounding the analysis of point processes with
terminal events it is helpful to consider a particular model relating the event process and
the terminal event. This model may then be used to compute expectations of marginal
quantities. Let d* denote the realized value of the time to death random variable D.
A convenient pattern-mixture type model for the dependence between the event process
and D is obtained by adopting a marginal model for death and a conditional rate function
model given the time of death (i.e., E(dN;(s) | d*) = r(s | d*) ds). One may stratify
the rate function on the basis of d*, or adopt a proportional rate model of the form
r(s | d*) =ro(s) exp(yg(d*)), where g(d) is any monotonically increasing function
of d (Cook and Lawless, 1997b). In this case rg(s) is the event rate at time s for a
subject with g(d*) = 0. The parameter y reflects the dependence of the event rate on
the survival time. If y < 0, for example, then subjects with longer survival times have
lower event rates.

Expressing rates in this way is convenient if detailed information is required about
the rate of events for specific values of d*. Often, however, it is more convenient to
examine marginal event rates of the sort

E(dN(s) | D>d*)/ds=/oor(s|u)f(u[u>d*)du. 3.3)
d*

This is the rate of events at time s < d* among subjects who survived at least to time d*.

In studies of health resource utilization, estimates of the total number of ¢vents expe-
rienced over the entire course of the study or a patient’s lifetime may be of interest. For
example, if each event is associated with a particular cost to the health care system (e.g.,
as may be the case with the need for radiation in studies of patients with bone metas-
tases) it may be desirable to compare the total number of events across the two groups.
If the total study duration is C* years, we may be interested in the marginal expecta-
tion E(N(C*)) where we are marginalizing over the survival time. In such analyses, the
association between the event process and the survival time must be addressed. This is
easily done by noting that

r(s,s) =E(dN(s)) = E[E(dN(s) | D > 5)]

is the marginal event rate of interest, and the mean at time t < C* is

t
u(t)=E(N(@®)) =/O r(u, w)SP () du. (3.4)
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If we let C* — oo and ¢ — oo, then we obtain E (N (D)) which is the expected number
of events over a patient’s lifetime. If a substantial fraction of the sainple is observed
to die, then calculations of this sort may be reasonable. If, however, the majority of
patients’ survival times are right censored, then estimates of E(N (D)) may involve ex-
trapolation over a region of time where it is not possible to assess the model and such
calculations should be interpreted with caution. Typically questions are restricted to the
period of study and no such extrapolation is required. In such settings it is advisable
to conduct supplementary survival analyses to help in the understanding of the treat-
ment effect, since a reduction in the mean function could arise from a reduction in the
conditional rate or an increase in the mortality rate.

3.2. Connections with competing risks methodology

Note that (3.4) resembles the expression for the cumulative incidence function given by
(1.2) but with the cause specific hazard k" (1) replaced by the conditional rate func-
tion r(u, u). Cook and Lawless (1997b) consider the estimate of (3.4) analogous to the
estimate (1.3) given by

t
At = f PSPy =) Foe, 1)5P (1), (3.5)
0 n<t

where F(u | u) = Y i Yi(u)dN;(u)/ 37—, Yi(u), SP(1) is the Kaplan—Meier estimate
for survival function SP(¢), and #; < --- < t,, are the set distinct times of recurrent or
terminal events. Note that (3.5) can be viewed as an estimate based on (3.4) obtained
by replacing the unknown quantities with the corresponding estimates. Moreover, if the
point process of interest is a failure time process in which the event of interest can occur
at most once, then the estimate (3.5) coincides with that of (1.3).

For the two sample problem, let 11 (#) and 11, (¢) denote the marginal mean functions
for treatment and control groups, respectively. Nonparametric results which accommo-
date dependent recurrent and terminal events are given by Cook and Lawless (1997b)
and developed more fully by Ghosh and Lin (2000) who consider a generalized log-rank
statistic

C*
U*= A W) d{ii @) — p2()}, (3.6)

where [1 (1) is the estimate of the marginal mean function . ;(¢) for group j, j =1,2,
from (3.5), and W{(¢) is a weight function. The weight function W (¢) can be specified
as
Y1.(0)Y. (1)a(z)
W)= ——""-—"-,
@ Y..()
where now Y;i(t) =I(t < X;),i=1,...,n;, j =1,2. Under the assumptions that
ny/n— p; and ny/n — p; as n — oo for constants p; and py and the null hypothesis
Hy: py(t) = ua(t), Ghosh and Lin (2000) show that the generalized log-rank statistic
U* has an asymptotic normal distribution with mean zero and variance which can be
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consistently estimated from the observed data. Let (U*)? /var(U*) denote the standard-
ized form of this statistic which is asymptotically y (21 y under the null hypothesis of no
treatment effect.

4. Application to a breast cancer trial

4.1. Bone metastases and skeletal related events

Hortobagyi et al. (1996) report on a multicenter randomized trial designed to investigate
the effect of pamidronate on the development of skeletal complications in breast cancer
patients with bone metastases. Patients were accrued between January 1991 and March
1994 from 97 study sites in the United States, Canada, Australia and New Zealand.
Patients with stage [V breast cancer receiving cytotoxic chemotherapy with at least one
predominantly lytic bone lesion greater than or equal to one centimeter in diameter
were randomized within strata defined by ECOG status. A total of 382 women were
enrolled in the study with 185 randomized to receive pamidronate and 197 to placebo
control. Two patients randomized to placebo did not have bone metastases and were
therefore excluded from subsequent analyses. Patients randomized to the pamidronate
arm received 90 mg of pamidronate disodium via a two hour infusion every four weeks
whereas patients randomized to the placebo received dextrose infusions. Patients on
a three week chemotherapy regimen were permitted to receive the study drug every
three weeks. After completion of the planned one year follow-up, the observation was
extended for an additional year and the results published in Hortobagyi et al. (1998).
Each patient was followed until death, the last date of contact or loss to follow-up, or
February 1, 1996.

At monthly visits patients were assessed and the occurrence of skeletal complica-
tions was recorded. The skeletal complications of interest include pathologic fractures,
spinal cord compression with vertebral fracture, the need for surgery to treat or prevent
fractures, and the need for radiation for the treatment of bone pain. Here we focus on
the need for radiation for the treatment of bone pain.

Figure 1 displays the duration of observation and need for radiation for all patients in
the control arm of Hortobagyi et al. (1998). Each patient is represented by a horizontal
line, the length of which represents the time on study. Those subjects known to have
died before they completed the two years of follow-up have solid lines, whereas those
known to have survived two years or more have lighter dashed lines. The probability of
surviving two years after randomization for these patients is approximately 25% so the
duration of follow-up to a large degree reflects the time from randomizaticn to death.
The dots on the lines represent the occurrence of radiation episodes, and for graphical
presentation, multiple episodes recorded as occurring on the same day are represented
with adjacent dots. The plot suggests that there is variation in need for radiation therapy,
and the fact that many patients die without requiring radition therapy illustrates the
competing risk phenomenon.

Figure 2 contains a naive estimate of the proportion of control patients who have
experienced at least one episode of radiation treatment based on the Kaplan—-Meier
function obtained from the estimated cause specific hazard. This estimate ignores the
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Fig. 1. Profile of events for control patients in Hortobagyi et al. (1998).
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Fig. 2. Graphical plots of the time to the first episode of radiation therapy.
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Fig. 3. Graphical plots of naive and marginal mean functions for the number of episodes of radiation therapy.

fact that patients dying before a need for radiation will not subsequently experience
the need for radiation therapy since subjects who die at time ¢ are treated in the same
way as subjects who are censored at the same time. Also plotted on Figure 2 are the
estimated cumulative incidence functions (1.3) based on the time to the first bout of
radiation therapy for patients receiving placebo and pamidronate therapy. The estimate
of the proportion of control patients requiring at least one bout of radiation therapy at
24 montbhs is substantially lower than the incorrect estimate based on the Kaplan—Meier
function. It is also apparent that treatment with pamidronate incurs a reduction in the
need for radiation therapy.

Despite the fact that the Kaplan-Meier estimate is uninterpretable in the presence of
the competing risk for death, the usual log rank test for the effect of pamidronate on the
cause specific hazard for the first bout of radiation therapy is valid and demonstrates a
strong benefit to treatment (p = 0.00001). The test for the difference in the cumulative
incidence functions based on the log-rank {unweighted) version of Gray’s (1988) test
statistic also provides strong evidence of benefit ( p = 0.00031).

Figure 3 contains analogous estimates for the cumulative mean functions. Specifi-
cally, the top estimate is the Nelson—Aalen estimate of the mean function for placebo
treated patients. Again, it is based on the assumption that subjects who die remain at risk
for bone pain and consequent bouts of radiation therapy. A valid estimate for the mar-
ginal expected number of bouts of radiation therapy is also provided and demonstrates
how greatly one can over estimate the number of events experienced per patient over
time by ignoring mortality. Naive use of the test based on (2.2) with a robust variance
estimate gives p = 0.00016. The test based on the Ghosh and Lin (2000) statistic based
on (3.6) gives p = 0.00125.
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5. Discussion

The analysis of recurrent events poses a number of modeling challenges. We have con-
sidered issues pertaining to the analysis of recurrent events in the presence of high
mortality. Treatment comparisons are particularly challenging in such settings and there
is considerable debate about the most appropriate basis for making treatment compar-
isons. Marginal methods such as those based on (3.6) are attractive when interest lies in
health resource utilization but they may not represent the most natural way of assessing
the benefits of treatment to individual patients. At the very least complimentary analy-
ses directed at examining treatment effects on survival are advisable to ensure that a
complete impression of the effect of treatment is obtained.

Related methodologic issues arise in health economics (Lin et al., 1997) and quality
of life (Zhao and Tsiatis, 1997). Cox (1999) discusses a relatively tractable normal the-
ory approach for modeling stochastic processes conditional on the time of a dependent
terminal event and highlights connections with problems in other areas.
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