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| SUMMARY. The kin-cohort design is a promising alternative to traditional cohort or case—control designs for
} estimating penetrance of an identified rare autosomal mutation. In this design, a suitably selected sample
| - of participants provides genotype and detailed family history information on the disease of interest. To
i i estimate penetrance of the mutation, we consider a marginal likelihood approach that is computationally
| simple to implement, more flexible than the original analytic approach proposed by Wacholder et al. (1998,
| American Journal of Epidemiology 148, 623-629), and more robust than the likelihood approach considered
| by Gail et al. (1999, Genetic Epidemiology 18, 15-39) to presence of residual familial correlation. We study
| the trade-off between robustness and efficiency using simulation experiments. The method is illustrated by
analysis of the data from the Washington Ashkenazi Study.
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1. Introduction

A disease is called fully penetrant with respect to a locus if
the genotype of an individual at that locus completely de-
termines his/her disease. Development of complex diseases,
however, typically involves a combination of various genetic

» and environmental risk exposures. Therefore, variation in dis-

ease expression is expected even among individuals with the

same genotype at the given locus due to their differences in

background with respect to the other risk factors. Such un-
certainty for a complex disease can be expressed in terms of
its penetrance, the probability of the disease in those with the
at-risk genotypes at a given disease locus.

Once a mutation in a specific locus has been identified as
a risk factor for a disease, investigators interested in pub-
lic health and genetic counseling ‘need population-based es-
timates of the'penetrance associated with carrying this mu-
tation. Studies for identifying a disease gene, such as linkage

" studies, typically collect data on families with large numbers

of affected individuals to enhance the power of detecting the
gene. Estimates of penetrance, which do-not properly account
for ascertainment by highly affected families, clearly overesti-
mate the risk in the general population due to overrepresen-
tation of the diseased individuals in the sample. Even after

" accounting for ascertainment, which often is a complex task

itself, risk estimates can be too high to be representative of
the general population since there may exist unobserved ge-
netic or environmental exposures in these families that had
enhanced the risk of the disease from the mutation (Struewing
et al., 1997; Wacholder et al., 1998). Using breast cancer-prone

families, e.g., Easton, Ford, and Bishop (1995), after account-
ing for ascertainment, obtained the estimate of the cumulative
risk of breast cancer to age 70 among BRCA1 mutation car-
riers to be as high as 85%. From a more population-based de-
sign, Struewing et al. (1997) estimated this risk from BRCA1
and BRCA2 mutations to be only 56%. In this study, 5318
Ashkenazi Jewish volunteers living in the Washington, D.C.
area were genotyped for three specific mutations in BRCA1
and BRCAZ2 genes and were interviewed for detailed personal
and family history of cancer in breast and some other or-
gans. Wacholder et al. (1998), who formally proposed this as
a kin-cohort design, treated the first-degree relatives of the
participants as a retrospective cohort and developed a simple
analytic approach to estimate the age-specific cumulative risk
of the carriers and noncarriers of the mutation using the dis-
ease history data of these relatives and the genotype data of
the volunteers. More details about this design, together with
its strengths and weaknesses over traditional cohort and case—
control studies, can be found in Wacholder et al. (1998) and
Gail, Pee, and Carroll (1999b).

Gail et al. (1999a), who called it the genotyped-proband
design, considered the likelihood of the data under the con-
ditional independent assumption that the phenotypes (dis-
ease trait) of the members of a family are independently dis-
tributed given their genotypes. An advantage of the likelihood
approach over the method of moments approach of Wacholder
et al. (1998) (see Section 2.3) is that it can incorporate various
types of information into the analysis, such as known paramet-
ric form of the cumulative risk, covariates, disease history for
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second or higher degree relatives, and the disease status of the
participants themselves. Also, the problem of nondecreasing
cumulative risk estimates obtained from the simple approach
of Wacholder et al. (1998) can be avoided by considering a
likelihood approach. The assumption underlying this likeli-
hood, however, may be violated in practice due to presence of
residual familial correlation arising from other shared genetic
or environmental factors. Gail, Pee, and Carroll (1999b) found
that penetrance estimates from their likelihood can have large
bias in the presence of such correlation.

In this article, we propose a new method of estimation
based on a marginal likelihood. The method enjoys the advan-
tages of the likelihood approach described above and yet, com-
pared with the likelihood approach of Gail et al. (1999a) and a
pseudolikelihood approach of Moore et al. (2000), the method
is computationally simpler and faster. Moreover, the marginal
method is robust to the violation of conditional independence
assumptions needed for the other proposed likelihood-based
methods. Specifically, it can be shown that, if the partici-
pants can be regarded as a random sample from an under-
lying population, the marginal likelihood estimate produces
consistent estimates of penetrance irrespective of the pres-
ence of residual familial correlation. When the assumption of
no residual familial correlation holds, however, the marginal
approach may be less efficient. We study the trade-off between
bias and efficiency by using simulation experiments. We rean-
alyze data from the Washington Ashkenazi Study using the
marginal likelihood approach to obtain a monotone estimate
of the age-specific cumulative risk of breast cancer associated
with carrying BRCA1/BRCA2 mutations.

2. Methods
2.1 Notation and Assumptions

Suppose K participants, sampled from an underlying target
population using an appropriate sampling design, provide
DNA samples and detailed personal and family history
information of the disease. We assume that the locus of
interest is autosomal, i.e., is not located on a sex chromosome,
and each individual can inherit either of the two alleles, i.e.,
A, the mutated type, or a, the common (wild) type, from each
of his/her parents. Thus, the genotype of an individual can be
any of the three possible combinations aa, Aa, and AA. Here
we assume the disease is inherited in a dominant fashion, i.e.,
the disease risk is the same whether one is heterozygous (Aa)
or homozygous (AA) with respect to the mutant allele, but
the techniques developed in this article can be easily extended
for recessive inheritance or to situations where the mode of
inheritance is unknown by estimating risk specific to the three
distinct %enotypes.

Let g; denote the indicator of whether the ith of the
K participants is a carrier (AA or Aa) or not (aa). The
ith participant gives the family history information of the
disease of interest about his/her n; relatives. Let y/ =
(yﬂ, .,ym‘) denote the family history information of the
ith participant and gz = (gu, RN gim) denote the genotypes
of the relatives, which are not observed. Let (yf ,...,yf;)
denote disease history of the participants themselves. Let
g0(y; 60) and g1 (y; 61) be probability mass or density functions
of Y, characterized by parameters 6y and 6;, describing the
distribution of the disease among the population of non-

carriers and carriers, respectively. We assume that, condition-
al on genotypes, the risk in the population of relatives is the

.same as that of the population from which the participants

have been sampled. All subsequent calculations of the pro-
bability distribution of the genotypes are based on standard
Mendelian genetics assumptions (Li, 1978), specifically no
inbreeding, random mating, and Hardy-Weinberg equili-
brium. The allele frequency of the mutation A will be denoted
by f.

2.2 Likelihood with No Residual Familial Correlation

Here we briefly describe the likelihood approach of Gail et
al. (1999a). Suppose we assume that, conditional on the
genotypes of the members of a fa.m1ly, their phenotypes (Y)
are independent, i.e.,

R R P, R R P
pr(yilvw-)yini’yi lgih---:ginugi)

=pr (uf 1 af) - pr (10 ) e (41 6F) . )

Under this assumption, the likelihood of the relatives’ data
conditional on the indexed participant’s genotype can be writ-
ten as ;

K
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where pr(gﬁ,...
genotypes of the family members given the participant’s
genotype, can be computed as a function of the allele
frequency using the Mendelian mode of inheritance. The
likelihood contribution of the participants, assuming they
form a random sample, is given by

LP=Hpr(yflgf)pr(gf)
i=1

o :
=1 (yip;egf) pr (gf) : 3
i=1

‘To accommodate sampling of the participants conditional on

their phenotypes, Gail et al. (1999a) computed the likelihood
contribution of the participants as

LP=ﬁpr(gflyf)- (4)
=1

Depending on the underlying sampling mechanism of the
participants, we will use (3) or (4) as the contribution of the
participants in our subsequent calculations.

2.3 Marginal Likelihood with Random Sampling of
Participants

The marginal likelihood is defined using a modification of
LR, Here we treat the n; relatives of the ith participant
mdxv1dually, ignoring any relationship between the relatives
of the participant. Thus, a family of (n;+1) members with one
participant and n; relatives is broken into n; pseudofamilies,
each consisting of two members, i.e., the participant and a

,gﬁ““ | gip ), the joint distribution of thé'
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relative. Given the ith participant’s genotype, the conditional
probabllxty of his/her ]th relative’s phenotype is given by
pr(yz] I 9; ) = ELB qu (yzgra R)pl’(g” I g; ) The marginal
likelihood of the relatlves data is defined by

Lﬁ=ﬁﬁpr(y§|gf). (®)

i=1j=1

Note the difference in the use of the mode of inheritance
in constructing the likelihoods L? and Lf,,. Conditional on
the participant’s genotype, we compute the distribution of the
genotypes of the relatives individually for Lf,, but jointly for
Lp. This gives a computational advantage of Lf,, over L%
since computing the joint distribution for large families can
be a cumbersome task.

Marginal likelihood approaches, together with robust
estimators of variances, are commonly used in statistics in
analysis of clustered data when parameters of the margi-
nal distributions of the individuals are of interest but
the correlation between individuals of the same cluster is
considered a nuisance. As long as the marginal model is
correctly specified, such an approach is known to produce
consistent estimates of the parameters of the marginal model
irrespective of the nature of intracluster correlation between
individuals. From this well-known fact about marginal
likelihood, it is easy to see that the marginal estimator we
propose will produce consistent parameter estimates as long
as the marginal models go(y; 6p) and ¢ (y; 61) are correct and
the assumed Mendelian mode of inheritance is valid.

Now consider ways of estimating the allele frequency from
the data. From Hardy-Weinberg equilibrium, we know that,
in the general population, the probability of carrying the
mutation is 1 — (1 — f)2. Thus, if p denotes the fraction of
carriers among the participants, assuming the participants
are sampled randomly, one can estimate f by solving the
equatlon 1 — (1 — £)2 = p. When the mutation is rare, i.e.,

~ 0, f ~ p/2 (Wacholder et al., 1998). Alternatively, one
can maximize the marginal likelihood jointly with respect to
6 and f. The information on f from the relatives, though it
may be small, can be incorporated in the second approach.

Asymptotic normality of the estimator can be established
from existing theory of correlated data (Diggle, Liang, and
Zeger, 1996). Let Si+(9 f) =251, 8506,f) + SF(6,f) and

ui+ (0, f) = ZJ (0 )+ u; (0 f), respectively, denote
the sum of the 0—scores and f-scores for the i¢th family. It
follows that, as K — oo, K¥/2{(4,f) - (6, f)} converges
to a multivariate normal distribution with mean zero and
variance-covariance matrix
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Considerable sxmphficatlon occurs when f is estimated by
simply solving 1 — (1 — f)2 = p . Using the fact that Ag; =0,
Byj2 =0, and agp = byg = 4/{1 — (1 - f) }, it is easy to see
that the asymptotic variance of 4 is given by

2
Aﬁl {Bu + 1—(—14—)‘)—1‘112/1’11‘2} Al_ll.
Thus, we see that estimation of f increases the variance of é,
the increase being small for rare mutations.

For a fixed value of f, the marginal likelihood can be
maximized with respect to 8 = (6,6} using an EM algo-
rithm. For simplicity, let us assume that the density of y
has the same parametric form, q(y;6), for both noncarriers
and carriers and that p and 6, the parameter values cor-
responding to the carriers and the noncarriers, respectively,
may vary independently. It follows that the ith iteration of
the EM algorithm involves the following steps:

E-Step. Define two sets of weights, up to a normalizing
constant, for the data as

W(JI::I(giP =0),
Woyj = pr (gf} =0Igip)q<yu,0(l 1))

+ [pr (gg =0|gf) (yw(’(l 1))
+pr(g§=llgf)q(y”,9(’ 1))],

and W, = 1 - W, Wi, = 1 - W, Define W§ =

(Wons- - Witn,) and WE = (Wh, . Wl ).

M-Step. In this step, we assume software is available
for obtaining the maximum likelihood (ML) estimate of
corresponding to the model ¢(y, 8) from a set of independent
observations with a specified set of weights. We obtain the
ML estimates from the data Y = (Y, Y/¥, .. YK,Y,? )
once correspondmg to the weights Wy = (W01 1W01» ci
W, Wik) and once corresponding to Wy = Wi, wi,

o W1 % Wi K) to obtain 0((;) and 0§ ), respectively.

It is possible to cleverly modify the above steps to allow
common parameters between 6; and 6.
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Let us consider estimating age-specific cumulative risk of
the disease when data on age at onset of the disease are
available. Let Fy(t) 1 — S4(t), g = 0,1, denote the
cumulative risk to age ¢ for the noncarriers and carriers,
respectively, and hg(t), g = 0,1, denote the corresponding
hazard functions. Let Y = (T, 4), where T denotes the age
at onset of the disease or the age at the end of follow-
up, whichever is smaller, and let § denote the indicator of
incidence of the disease before the end of follow-up. Assuming
that the distribution of the censoring time for an individual
does not depend on his/her genotype, Lf,, and LY can be
shown to be proportional to

K n;

I11I E pr (o5 197) 5,5 (¢5) h o (tg;)

=1 j=1 R—o

and IIX, S p(tP kg e (tF )} , Tespectively. Parametric
models for the cumulatlve risks can be fitted by the EM
algorithm described above.

Wacholder et al. (1998) proposed estimating Fy(t)
nonparametrically using the Kaplan-Meyer estimates of the
cumulative risk of the disease in the first-degree relatives of
the noncarrier and carrier participants. They showed that, for
a rare mutation,

Ro(t) = (1 - f)Fo(t) + fF1(t),
Ri(t) = (0.5~ f/2)Fo(t) + (0.5 + f/2)Fi(t),

where Rg(t), g = 0,1, denotes the cumulative risk for the
first-degree relatives of noncarriers and carriers, respectively.
They proposed substituting the Kaplan-Meyer estimates for
Rp and R; in these approximate equations and solving for
Fy(t) and Fi(t). This method, however, does not guarantee
that the resulting estimates of the cumulative risk will be
monotone in finite samples. In fact, when the mutation is
rare, the method often produces a nonincreasing estimate
of Fy (Struewing et al., 1997; Wacholder et al., -1998). To
obtain proper nonparametric estimates of Sy and S1, say
So and 51, we ‘propose ma.ximizing the marginal likelihood
nonparametrically. Let M {t1 <t2--- <ty} be the
observed event times in the data For any T, let I(T) denote
the index of the largest event time less than or equal to T.
Both So and S; will have potentlal jumps within the M
observed event times. Let {)\91, Agnm} denote the hazard
components of Sg To obtain the nonparametnc maximum
marginal likelihood estimates (NPMMLE), one can use the
EM algorithm described above. In the E-step, we substitute

1-6 5
H (1= Agm) AguT) H (1 - 3gm)
m<I(T)

m<I(T)

for f(y,05). The M-step has a closed-form solution with
Agm = Li€E(tm) Woi/ ZieR(tm) Woir Where R(tm) is the set
of indices of the individuals at risk, i.e., T > tm, and £ (tm)
is the set of indices of the individual(s) with an event at time
tm.

Note that, if we assume the failure time data is discrete,
the number of parameters to be estimated, though possibly

large, remains fixed. When the failure time data are contj- .

nuous, however, the number of event times and hence the

number of parameters to be estimated increase as the sample
size increases. Asymptotic properties of such a truly nonpar-

ametric procedure remain to be studied.

2.4 Nonrandom Sample of Participants

So far we have assumed that the participants can be treated
as a random sample from an underlying population. In
practice, however, the participants may not be a random
sample, both intentionally and unintentionally, and ignoring
the ascertainment can cause serious bias. In the Washington
Ashkenazi Study, e.g., the families were ascertained through
volunteer participants. Since individuals with a family history
of breast cancer are more likely to participate (Struewing et
al., 1997; Wacholder et al., 1998), the estimates of risk we
obtain by treating the volunteers as a random sample are
biased upward. When the ascertainment is nonrandom and
not under the control of the investigator, it is generally very
difficult to correct for such bias. One may intentionally select:
the participants in a nonrandom way to increase efﬁcnency
When Y is dichotomous, e.gi, one may consider a case—.
control sample instead of a random sample. By i increasing the
proportion of case participants, one can obtain more carriers.
in the sample of participants (Wacholder et al., 1998; Gail et'
al., 1999). :

The appropriate marginal likelihood when the sampling of
the participants is based on their phenotypes is given by

L=LijxLF = HHpr(y,lez,y,>XHpr(gz lyz)a

i=1j5=1

6) .

Here Pr(gp |y ) depends on qo(y;60), q1(y;61), and 7 =
1— (1 — f)? through the relationship (Gail et al., 1999)

7q1(y; 01)

prig=1]y) = 7q1(y;61) + (1 = m)go(v; 60)

Thus, L depends on the parameters of the marginal model, .
69,01, and f. Unfortunately, in the presence of residual fam1llal

correlation, L »r depends on y” and is not determined by these '~

parameters. In the absence of resxdual familial correlation,
one has pr(yw | of uF

likelihood is of the form

K n; K
- P P
L=Lj x Lf4=HHpr(y§-Igi)XHpr(gflyi),
i=1

i=1j=1
(7
which can be computed as a function of 6y, 61, and f. The
bias of using (7) in the presence of residual correlation has
been studied in Section 3.

Moore et al. (2000) observed that, as the number of
parameters gets large, the score equations corresponding to
the maximum likelihood method of Gail et al. (1999a) become
unstable and difficult to solve. As an alternative to the
ma.xxmum likelihood, they proposed maximizing L (ignoring
L ) with respect to § for fixed f and maximizing L” (ignoring
LR ) with respect to f for fixed 6 and iterating between them
until convergence. They found that such a pseudolikelihood

) = pr(yz] | 9 ) and the marginal .

|
!
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approach was stable even for large numbers of parameters.
The marginal version of this approach will be very similar
except that one should maximize L, (instead of L®) with
respect to @ for fixed f. In Section 3, the bias and efficiency

of the pseudolikelihood approach of Moore et al. (2000)

and the corresponding marginal version are compared using
simulation experiments.

3. Simulation Studies
3.1 Binary Phenotype

In this section, we compare the marginal likelihood with
alternative likelihood-based approaches in terms of bias and
efficiency. The first series of simulation experiments assumes
a dichotomous phenotype. The marginal probabilities of
developing the disease for a carrier and a noncarrier, namely
¢1 and ¢y, respectively, are chosen to be 0.56 and 0.05 and
the allele frequency (f) is chosen to be 0.01. Residual familial

: qprrelation between the members of a family are generated
“using the logistic random effects model (Gail et al., 1999b)

pr(y=1]g,b) = {1 +exp(—pg +5)}"",

where the random effects b are distributed as N(0,72) and are
‘independently drawn for each family. The correlation induced
by such a random effects model increases with the value of
72, and 7% = 0.0 corresponds to absence of residual familial
‘correlation. For each value of 72, u; and pg are chosen so

‘that ¢; and @¢ remain fixed at 0.56 and 0.05. The effects of
*family size and structure are also investigated by considering

three types of families for the participant: (I) mother and one
sister, (II) mother and grandmother, and (III) mother and
two sisters. :

First we report on the results where participants are
sampled randomly. We estimated 6 = (6g,61), where 6; =
log{#i/(1 - ¢:)} and i = 0, 1, using the MLE (maximum like-
lihood estimator) and MMLE (maximum marginal likelihood

" @stimator), keeping the value of the allele frequency fixed at

its method of moments-based estimate obtained from the pro-
portion of carriers in the sample of participants (see Section
2.3). We note that, in the Washington Ashkenazi Study,
though the participants’ disease histories were available as

part of the study, Struewing et al. (1997) did not use this
data in their analysis in order to avoid any potential bias
caused by the effect of survival of the diseased individuals
on their participation. For our simulated data, though the
possibility of such bias does not exist, we perform an analysis
that excluded the participants’ phenotype data and compared
the results with an analysis that included them. The bias
and variances for §; are shown in Table 1. For 72 = 0.0,
we observe that both MLE and MMLE had small biases
and that the MMLE was slightly less efficient than the
MLE. As the value of 72 increased, the MLE based on
a conditional independence assumption became increasingly
more biased, whereas the MMLE continued to have very small
bias. Comparing the three types of families, we observe that,
the higher the gain in efficiency for the MLE over the MMLE
when the conditional independence assumption was true, the
more severe was the bias for the MLE when the assumption
did not hold. Inclusion of the participants’ data in the analysis
substantially improved the precision of both the MLE and
MMLE and reduced the bias of the MLE. For estimation of
6o, the difference between the MLE and MMLE were very
small (results not reported). For 72 = 0.0, the MMLE was as
efficient as the MLE, and for 72 > 0.0, the MLE had only a
small bias.

We repeat the above experiments with a case—control
sample of the participants. From a random sample of 5000
participants, we select all the cases and only 6.1% of the
controls so that the numbers of cases and controls are
approximately the same. The results for the pseudolikelihood
procedure of Moore et al. (2000) (PLE), the corresponding
marginal version (MPLE), the MLE, and the MMLE are
shown in Table 2. Here we observe that, for 72 > 0.0, all the
methods were biased; the biases of the MPLE and the MMLE,
however, were less severe than those of the PLE and the HLE.
Somewhat surprisingly, we found that, for 72 > 0.0, the PLE
and MLE not only had larger bias than the corresponding
marginal estimators, they often had larger variances, too.
For 72 = 0.0, all the methods have small bias and similar
efficiency.

Table 1
Kin-cohort design with randomly selected probands: bias and variability in estimation of log{¢1/(1 — ¢1)}

~

Family type:

I I : 11
Bias Var Bias Var Bias Var

Using relatives’ 2 =00 MLE
phenotype data MMLE
r2=10 MLE
MMLE
=20 MLE
MMLE
Using participants’ and =00 MLE
relatives’ phenotype data MMLE
=10 MLE
MMLE
72=20 MLE
MMLE

-0.020 0.065 0.000 0.099 0.005 0.041
—-0.015  0.077 -0.087 0.131 0.012 0.050
0.342 0.106 0.620 0.166 0.521  0.056
-0.002 0.086 -0.083 0.130 0.014 0.056
0916 0.186 1506 0331 1.134 0.100
0.028 0.084 -0.076 0.133 0.023 0.051

0.007 0.025 0.001 0.029 -0.002 0.018
0.006 0.027 ~0.025 0.031 -0.004 0.020
0.122 0.034 0.161 0.038 0.239 0.027
0.000 0.03¢4 -0.018 0.037 0.004 0.030°
0.238 0.036 0303 0.041 0.514 0.032
—0.017 0.031 -0.040 0.037 0.008 0.031
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Table 2
Kin-cohort design with case~control sample of probands: bias and variability
in estimation of log{¢1/(1 — ¢1)} for PLE, MPLE, MLE, and MMLE

I II III
Family type: Bias Var Bias Var Bias Var
% =00 PLE 0.021 0.132 0.022 0.233 0.002 0.083
MPLE 0.027 0.130 0.049 0.288 0.005 0.082
MLE 0.014 0.100 0.030 0.142 0.019 0.073
MMLE 0.015 0.101 0.050 0.160 0.017 0.073
2 =1.0 PLE 0.444 0.191 0.579 0.554 0.473 0.134
MPLE 0.321 0.168 0.331 0.851 0.274 0.110
MLE 0.338 0.125 0.472 0.200 0.357 0.093
MMLE 0.289 0.120 0.369 0.150 0.264 ~  0.087 -~ :
72 =20 PLE 0.679 0.272 1.446 3.852 - "~ 0.975 0.408 i
MPLE 0.354 0.181 0.327 0.690 0344 - 0.126 ;
MLE 0.605 0.230 0.859 0.644 0.702 0.118
MMLE 0.465 0.165 0.528 0.411 0.420

0.096

3.2 Phenotype: Age at Onset of Disease

In this section, we study the property of the nonparametric
marginal likelihood estimator through simulation studies.
The time to disease onset is generated from a Weibull
distribution for both carriers and noncarriers. The shape and
scale parameters for carriers and noncarriers are chosen to
be (4.0474, 0.0164) and (5.1479, 0.0133), respectively. These
parameter values correspond to a mean age at onset of 69
years for noncarriers and of 55 years for carriers. We assumed
that each participant provided data on time to disease onset
for his/her mother and one sister. To allow residual correlation
between the mother and the sister, we used the Clayton—
Oak’s bivariate copula model (Clayton and Cuzick, 1978) for
their joint distribution so that the marginal distributions for
carriers and noncarriers remain fixed at the corresponding
Weibull distributions. We chose the association parameter
in the copula model so that it corresponds to a Pearson’s
correlation of 0.5 between two relatives’ ages at onset. The
censoring mechanism was generated by simulating ages for
the mothers and sisters from two normal distributions with
mean and variance corresponding to the mothers and sisters
of the Washington Ashkenazi data. A woman is considered
censored if her simulated age at onset of disease exceeds her
simulated age. After generating continuous age data from this
model, we rounded them to the nearest integer. We chose the
allele frequency to be 0.01. In each replication, we estimated
the cumulative risk functions nonparametrically based on
relatives’ phenotype data using the NPMMLE. In Figure 1,
the average of the estimated risks over 100 simulations has
been compared with the corresponding true risk from the
Weibull distribution for the carriers. We see that, until age 50,
the estimated risk followed the true risk very closely. After age
50, the estimated risk had a small downward bias. The bias,
however, went away as we increased the number of families
(results not shown).

4. Washington Ashkenazi Study

Struewing et al. (1997) and Wacholder et al. (1998) published
a series of plots showing the cumulative risk for various

cancers estimated from the cancer history information of
the first-degree relatives of the volunteer participants. They
used a total of 4873 family sets, each _corresponding to
an index participant for whom the genotype information
was available. All of the estimated cumulative risk curves
were nonmonotone, with the problem being more seriou;fs?
for some of the graphs than the others. Using the same'
data, we reestimate those cumulative risk curves using the:
nonparametric marginal likelihood approach described . in;
Section 2.3 (Figure 2). We observe that our estimates, after
imposing monotonicity constraints, remain very close to the
original estimates of Struewing et al. (1997) (not shown
here). As a result, the most substantial differences between
the estimates are observed in those age intervals where the
original estimates had a drop in cumulative risk. A major "
goal of the study was to estimate the lifetime penetrance of-
the mutations for breast cancer, defined as the cumulative
risk to age 70. The marginal likelihood approach estimated
this quantity as 60%, which is slightly larger than the original
estimate of 56%.

5. Discussion

In this paper, we have proposed the use of a marginal likeli-
hood approach to the kin-cohort design for estimation of pene-
trance. Computationally, the method is simple to implement;
the EM algorithm we have defined for nonparametric estima-
tion of the age-specific penetrance has been found to be re-
markably faster than similar algorithms for alternative likeli-
hood-based methods discussed here. The robustness property
of our method stems from the fact that, if the participants
are randomly sampled, the marginal likelihood scores, which
ignore the known Mendelian correlation structure between
the genotypes of the relatives of the same participant, are
unbiased irrespective of the nature of the correlation between
the phenotypes of the relatives given their genotypes. On
the other hand, the scores corresponding to likelihood-based
methods, which assume the phenotypes of the relatives given
their genotypes are independent but use the known genotypic
correlation of the relatives to construct the true likelihood, are
biased if the conditional independence assumption is violated.
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Cumulative risk

0.0

‘Figure 1. Average of nonparametric estimates of cumula-
tive risk over 100 replications (dotted line) and the true
s'c;%umulative risk (solid line) for carriers.

'When the conditional independence assumption does hold,

ignoring the genotypic correlation reduces efficiency. Though

. we have seen that, for small families, the loss of efficiency is

" small, for large families, more substantial loss of efficiency is
possible. Generalized estimating equation (GEE) (Zhao and
Prentice, 1990; Liang, Zeger, and Quagish, 1992) techniques,
with suitable modification for the fact that genotypes of the
relatives are unknown, can be used to enhance efficiency of
the marginal approach.

Although the marginal likelihood method may be robust
to the violation of the conditional independence assumption
discussed above, the method can be sensitive to violation of
assumptions involving the ascertainment and the Mendelian
“inode of inheritance, just like other methods. In general,
accounting for aseertainment is a complex process and has
to be addressed on a case-by-case basis. In Section 2.4,
we considered an important special case of nonrandom
ascertainment where participants are sampled randomly,
conditional on their disease status, for which the marginal
likelihood is given in (6). We note that, besides considering
a retrospective likelihood for the participants’ data, one also

needs to condition on the disease status of the participants -

while computing the contribution of the relatives. Failing
to condition can lead to biased estimates of penetrance in
the presence of residual correlation between participants and
their relatives. We found that this bias, though less severe
than that of the alternative likelihood methods discussed,
can be substantial (Table 2). Larger biases for the alternative
methods in this situation can be attributed to the fact that
these methods are affected not only by residual correlation
between the participants and the relatives but also by
the residual correlation between the relatives of the same
participants. To account for conditioning of the participants’
disease status in the relatives’ contribution to the marginal
likelihood, a model for the joint distribution of diseases in
- relative-participant pairs, defined in terms of the marginal
penetrances and some additional parameters describing
residual correlation, can be considered. Sensitivity of the
marginal likelihood method to the violation of the Mendelian
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Figure 2. a. Estimated risk of breast cancer and 95%
pointwise confidence interval among carriers of a BRCA1 or
BRCA2 mutation. The estimated. risk for noncarriers is also
shown. b. Estimated risk of breast cancer among carriers of
each of the three mutations. c. Same as (a) for ovarian cancer.
d. Same as (b) for ovarian cancer.

mode of inheritance assumption needs future investigation.
Gail et al. (1999b) studied the bias of their likelihood
approach to the violation of such an assumption due to
population stratification. They found the bias to be small for
rare mutations and noticeable for more common alleles. Since,
in the marginal approach, the probability calculation for the
genotypes uses the mode of inheritance assumption only at
a marginal level, we believe that the bias of the marginal
approach to violation of this assumption should be less than
or equal to the bias in Gail’s method.
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" RESUME

Le protocole d’étude de cohorte familiale est une alternative
prometteuse aux protocoles classiques d’études de cohorte
ou cas-témoins pour estimer la pénétrance d’une mutation
autosomale rare connue. Dans ce protocole d’étude, un
échantillon de participants sélectionné de maniére adéquate
fournit les informations génotypiques et d’histoire familiale
détaillée sur la maladie d’intérét. Pour estimer la pénétrance
de la mutation, nous considérons une approche de
vraisemblance marginale qui est simple & réaliser sur le plan
calculatoire, plus flexible que I'approche analytique originale
proposée par Wacholder et al (1998), et plus robuste 3 la
présence de corrélation familiale résiduelle que 'approche de
vraisemblance considérée par Gail et al (1999). Nous étudions
le compromis entre robustesse et efficacité par des expériences
de simulation. La méthode est illustrée par l’analyse des
données de 1’étude ashkénaze de Washington.
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