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In this issue of the journal, Gustavsson and his co-
authors describe a simple method of computing the
population attributable fractions (PAF) associated
with two causes and present a correct and simple way
to estimate the variance. The PAF, which goes by
various names, including etiologic fraction and
population attributable risk, is the portion of the
total burden of a disease in a population that should
be ascribed to certain cause(s) of the disease. A
moderately arcane parameter at first blush, the PAF
deserves attention because it measures disease bur-
den. It helps to describe the effect of different inter-
ventions on various target populations. It is often
useful for building risk prediction models such as the
Gail model [1]. Improvements in estimation, inter-
pretation, and use of the PAF make an important
contribution to epidemiology.

Gustavsson concentrates on simple bifurcation of
the population into exposed and unexposed, but of-
ten we need to go further. To gauge the impact on
risk of two exposures that occur together in the
population, whether they interact biologically or
merely coexist, we should compute a PAF for each as
well as an overall PAF. The individual PAF should be
computed by adjusting for the other risk factors: it
measures the fraction of cases that would be elimi-
nated by removing the single exposure from the
population if the distribution of the other exposures
were unchanged. A brief review of the mathematics is
useful for subsequent calculations.

Based on the above definition of adjusted PAF,
the PAF for an exposure E adjusted for a polytomous
factor C with K levels (strata) can be defined as
(2, 3]

PAF(E) = 1 - Y P(C})P(DIE, Cy)/P(D), (1)
k=1

where P(C;) is the fraction of the whole population
that is in the kth stratum and P(D|E,C;) is the
probability of the disease among unexposed subjects
in the kth stratum. An alternative formula that can be
useful for computing adjusted PAF from case—con-
trol data (both matched and unmatched) is given by

(4]
PAF(E) = Pr(Ci|D)PAFi(E), (2)
k

where P(Cy|D) is the fraction of all cases that are in
the kth stratum and PAFi(E) is the PAF due to E in
the kth stratum. In (2), P4F(E) can be estimated
from case—control studies using the standard formula

RRy(E) - 1
RRE) ¥

where RR;(E) is relative risk associated with E in
stratum C;. Neither of formulae (1) or (2) requires
that the relative risk associated with E is constant
across strata. Both of the formulae are applicable for
adjustment of confounders as well as effect modifiers.

Gustavsson and co-authors use a hypothetical ex-
ample involving two exposures 4 and B in their
Table 1. Based on the formula (1) given above, we
can compute the PAFs due to the exposures 4 and B
individually (adjusted for each other) as 0.24 and
0.44, respectively. Based on this data, the authors
report that the overall PAF due to A and B is 0.56.
These calculations give several insights. First, the sum
of PAF for the two individual risk factors exceeds the
overall PAF due to the two risk factors together.
Thus, in this example, the burden of the disease due
to the two risk factors together cannot be partitioned
into terms of the burdens of the disease due to the
individual risk factors. Second, while a total of 56%
of the cases could be eliminated by removing both 4
and B, as much as 44% of cases can be eliminated by
removing B alone. Thus, in terms of determining
public health policy for reducing burden of the dis-
ease from the population, it seems removal of 4 and
B (assuming they are modifiable) both would yield
only a modest benefit over removing B alone.

Gustavsson’s real-world example considers lung
cancer incidence attributable to exposure to asbestos
and combustion products in Stockholm, Sweden
(Table 2). Based on formula (2) and (3), we estimate
the individual PAF for asbestos and combustion
product to be 4.4 and 2.4%. The authors estimate the
overall PAF due to asbestos and combustion product
together to be about 6.9%. Unlike the hypothetical
example, here, the total PAF due to the two risk
factors together roughly equals the sum of PAF for
the individual risk factors. That is, the total burden of
the disease due to asbestos and combustion product
together can be partitioned in terms of the burden of
the disease due to the individual risk factors.

PAF,(E) = Pr(E|D, Ci)
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There are critical links between the parameters of
PAF, relative risks and risk differences. In general,
partitioning of the total PAF in terms of the PAF for
the individual risk factors is possible if, but only if,
the effects of the two risk factors on the disease risk
are additive, that is, the excess risk due to exposure to
both of two factors must equal to sum of the excess
risks due to exposure to the individual factors [5]. In
terms of relative risks, this condition for two expo-
sures A and B can be stated as

RR(AB) = RR(AB) + RR(4B) — 1, 4

where RR(AB),RR(AB) and RR(AB) denote the rela-
tive risks corresponding to the exposure groups
AB,AB and AB, respectively, in reference to the
common baseline exposure 4B. In the example of
lung cancer, it is easy to see from Table 2 that con-
dition (4) is satisfied approximately for exposures to
asbestos and combustion product (2.25 ~ 1.62+
1.67 - 1).

In short, we can gain important insight if we
compute the PAF for to the individual risk factors
and compare them with the overall PAF for the
combination of factors together. For categorical ex-
posure variables, both the overall PAF and the ad-
justed PAF for the individual risk factors can be
computed empirically without any model assumption
on the joint relative risk parameters. For dealing with
continuous exposures or exposures with large number
of ordered categories, on the other hand, model based
methods may be needed for obtaining stable estimate
of these different types of PAF [6, 7].

We suspect PAF will gain new uses as epidemiol-
ogists turn increasing attention to the interplay of
genetic (G) and environmental (E) factors in the eti-
ology of complex diseases. Obviously, the overall
PAF due to G and E, defined as the fraction of cases
that would be eliminated if both the exposure G and
E are removed from the population is not directly
relevant because the genetic exposure is not modifi-
able. Still, appropriate PAF can serve public health
purposes by revealing the possible impact of an in-
tervention on E. For population based intervention
that impacts the population as a whole, such as
banning a carcinogenic agent, the relevant measure of
impact of the ban is the PAF for E adjusted for G;
this estimates the fraction of cases that will be
eliminated if E is removed from the population
without affecting G. Furthermore, if G and E are
roughly independently distributed in the population,
adjustment for G is not necessary for computation of
the PAF due to E, irrespective of whether G is an
effect modifier of E or not. This result, although
generally not known, can be derived from formula (1)
by noting that under G—E independence assumption
Pr(G) = Pr(G|E), that is, the probability of exposure
to G in the whole population is same as that in the
subpopulation of subjects who are not exposed to E.

For intervention aimed at an individual, such as
counseling for smoking cessation, however, PAF is
not directly relevant; the correct measure of impact is
given by the excess absolute risk for an individual
subject due to the exposure E. In this context, an
important question is whether genetic information
can be used to target subjects for which elimination of
E would be most beneficial. The net benefits of pre-
vention due to elimination of the exposure E for
subgroups of subjects with and without the genetic
exposure G can be measured by the risk differences
RDG(E) = Pr(D|E, G) — Pr(D|E, G) and RD&(E) = Pr
(D|E, G) — Pr(DIE, G), respectively [8].

We also suspect the PAF will see expanded use
because risk prediction models such as Gail model [1]
are often built on it. Occasionally, risk prediction
models can be derived from cohort studies in which
the exposure-specific absolute risks of the disease can
be estimate directly. For case—control studies, the
baseline disease probabilities not being known, the
‘absolute risks of the disease cannot be computed di-
r¥ctly. An overall PAF due to all risk factors together
can be computed from case—control studies that en-
roll a fully representative case group. If the proba-
bility of the disease (Pr(D)) in the underlying
population can be estimated from other sources of
data, the baseline disease probability Pr(D|E), defined
as the probability of the disease who are not exposed
to any of the risk factors, can be estimated using the
relationship

(1 — PAF) Pr(D) = Pr(D|E).

Using this baseline, the prediction model yields ab-
solute risk estimates for various combinations of ex-
posures.

We share the view of Gustavsson and co-authors
that measures of PAF involving multiple exposures
deserve attention as they will play important roles in
epidemiology and public health.
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