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When a rare inherited mutation in a disease gene, such as BRCA1, is found through
extensive study of high-risk families, it is critical to estimate not only age-spe-
cific penetrance of the disease associated with the mutation, but also the residual
effect of family history once the mutation is taken into account. The kin-cohort
design, a cross-sectional survey of a suitable population that collects DNA and
family history data, provides an efficient alternative to cohort or case-control
designs for estimating age-specific penetrance in a population not selected be-
cause of high familial risk. In this report, we develop a method for analyzing
kin-cohort data that simultaneously estimate the age-specific cumulative risk of
the disease among the carriers and non-carriers of the mutations and the gene-
adjusted residual familial aggregation or correlation of the disease. We employ a
semiparametric modeling approach, where the marginal cumulative risks corre-
sponding to the carriers and non-carriers are treated non-parametrically and the
residual familial aggregation is described parametrically by a class of bivariate
failure time models known as copula models. A simple and robust two-stage
method is developed for estimation. We apply the method to data from the Wash-
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ington Ashkenazi Study [Struewing et al., 1997, N Engl J Med 336:1401-1408]
to study the residual effect of family history on the risk of breast cancer among
non-carriers and carriers of specific BRCAI/BRCA?2 germline mutations. We find
that positive history of a single first-degree relative significantly increases risk
of the non-carriers (RR = 2.0, 95% CI = 1.6-2.6) but has little or no effect on
the carriers. Genet. Epidemiol. 21:123-138,2001.  © 2001 Wiley-Liss, Inc.
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gregation; penetrance

INTRODUCTION

An important goal in the study of the epidemiology of the familial diseases is to
identify risk factors, genetic and/or environmental, which can explain familial aggre-
gation of the disease. Once such a risk factor or a group of such factors is identified,
investigators interested in public health and genetic counseling find it important to
estimate not only the disease risk associated with the identified risk factors, but also
the residual familial correlation of the disease after accounting for these known risk
factors. Estimate of the residual familial correlation can be useful to guide further
investigations of still unidentified risk factors and to build models for more accurate
risk prediction. Breast cancer, for example, has been long known to aggregate within
families. Published results indicate that in the general population approximately 10—
15% of breast cancer cases have a family history of the disease and about 50% of
these cases can be attributed to the inheritance of a susceptibility gene. Since the
discovery of the BRCA1/BRCA2 high-risk susceptibility genes, the quantification of
the contribution of mutations in these genes has been a major research question. In
high-risk families containing multiple cases of breast and/or ovarian cancer, muta-
tions in these two genes account for the majority of the breast cancer cases [Easton
et al., 1993, 1995]. In the general population, however, these mutations can explain
only a small portion of the familial aggregation of the disease because of low preva-
lence, so other familial risk factors are suspected to play a role.

Struewing et al. [1997] and Wacholder et al. [1998] recently proposed and used
a design known as kin-cohort for estimation of cancer risk associated with specific
inherited mutations in disease genes. Struewing et al. [1997] genotyped 5,318
Ashkenazi Jewish volunteers living in the Washington, D.C., area for specific founder
mutations in BRCAI and BRCA2 genes. The volunteers also provided detailed per-
sonal and family history information, including age at onset, for a number of com-
mon cancers. From this study, using the disease history data on the relatives and the
genotype information on the volunteers, the authors estimated the lifetime risk of
penetrance of breast cancer, defined as the cumulative risk for a woman up to age
70, associated with the three Ashkenazi founder mutations, 185delAG and 5382insC
in BRCAI and 617delT in BRCA2, to be 56%. Wacholder et al. [1998] termed the
design underlying the study kin-cohort to emphasize the fact that the relatives of the
volunteers formed a retrospective cohort who are followed from birth to onset of
cancer or to the censoring time. The volunteers themselves, in contrast, cannot be
treated as a cohort since a diseased individual could only participate if she remained
alive until the study took place. Further complications arise since the mutations un-
der study could also have an effect on the survival of the diseased individuals. Due
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to the complex nature of the volunteers’ disease data, the above authors did not use
the personal history information of the volunteers in their analysis. Gail et al. [1999b]
listed several practical advantages of the kin-cohort design over traditional cohort or
case-control designs.

In this article, we proposed an approach for analyzing kin-cohort data that
simultaneously addresses the problems of estimation of disease risk associated with
the mutations under study and the estimation of the residual familial aggregation
of the disease. Assuming that the relatives of the participants (volunteers in WAS
study) in a kin-cohort study form a cohort, we consider modeling the joint age-at-
onset distribution for two relatives given their genotypes using a class of bivariate
failure time distributions, known as copula models. We treat the age-specific mar-
ginal cumulative risks among the non-carriers and carriers non-parametrically, while
parametric models induced by the copula models are specified for the residual fa-
milial aggregation. Non-parametric estimation of the marginal cumulative risks not
only allows robust estimation of the marginal penetrance functions, but also lets
one investigate the residual correlation after accounting for the effect of the muta-
tions to the fullest extent. On the other hand, non-parametric estimation of correla-
tion among failure times in the presence of bivariate censoring is often complex
and requires a large number of joint incidence of the disease. Given that joint
incidence of breast cancer in two relatives is a rare event, for our application it
seems best to estimate correlation using a summary measure induced by a para-
metric correlation model. For parameter estimation, we consider a two-stage quasi-
likelihood estimation approach that takes account of the fact that the genotypes of
the relatives are unknown, though indirect information is available through the
genotyped participants. The method is computationally simple and requires mini-
mal assumptions for consistent estimation of the parameters of interest. We apply
the proposed method to the data from the Washington Ashkenazi Study to investi-
gate the residual effect of family history on the risk of breast cancer among non-
carriers and carriers of specific BRCAI/BRCA2 mutations. This article is concluded
with a discussion on the statistical methodologies and implications of the scientific
findings.

MODELS
Copula Models

Let Ty and T, denote two, possibly correlated, failure times. For example, T,
and T; can be the age at onset of a disease for two related individuals. Suppose for i
=1, 2, G(#;) = pr(T; 2 t;) denotes the marginal survivor function for 7,. Let S(¢,,5,) =
pr(7, 2 1,1, 2 t,) denote the joint survivor function. In the copula approach, one
models S(#,,%,) in terms of the two marginal survivor functions, G, and G,, and a
copula function which imposes a correlation structure between the two failure times.
A copula function C(,v) is a bivariate distribution function on the unit square [0, 1]
x [0, 1] with uniform marginal distributions. For any copula function C(x,v), one can
show that S(t,,t) = C[G\(t,), Gy(t,)] defines a joint survivor function, which has G,
and G, as the corresponding marginal survivor functions. Several researchers in the
past have studied various classes of copula functions, giving rise to different copula
models. Three examples of such models are as follows:
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(1) Frank’s model [Frank, 1979]

(1-651-6%)
1-6
uv, =1

Cy(u,v)=1log 41— /log 8, 0<6<1

(2) Clayton’s model [Clayton, 1978]

eut 4 050,
C,(u,v) = l+u” +v7) e,
uv, =0,
(3) Positive stable model [Hougard, 1986]

exp| ~((-logu)} +(~logn?'| 0< 6 <1
w, 6=1,

Co(u,v)=

Recent applications of these models in genetic epidemiology, particularly for the
Clayton’s model, include studies by Li et al. [1998] and Li and Huang [1998].

In the literature of failure time data analysis, both local and global measures of
dependence are considered to measure association between two failure times. Local
measures of association, such as the local odds ratio function [Oakes, 1989], are used
to characterize correlation at specific time points of the sample space and can be used
to investigate the time-dependent correlation structure between two failure times. On
the other hand, global measures of association, such as Pearson’s correlation coeffi-
cient or Kendall’s tau, give a summary measure of association over the whole sample
space. In all the three models described above, 0 can be interpreted as a summary
measure of association, though the exact interpretation of @ is different in different
models. Many common global measures of association can be shown to have a one-
to-one monotone relationship with 8 in the copula models. It is important to realize
that even for a fixed global measure of association, different models can give quite
different time-dependent association structures. The following illustrates this point.
In analysis of familial disease data, epidemiologists often measure the familial corre-
lation of the disease by the recurrence risk ratio: the ratio of the risk of the disease of
a relative of an affected woman to that of a relative of an unaffected woman. Con-
sider this recurrence risk ratio as a global measure of association between two failure
times, where a woman is considered affected if she has the disease before a fixed old
age, say 100 years. In Fig. 1, we illustrate through hypothetical examples how the
different copula models imply different effects of the age at onset of the disease of a
woman on the disease risk of her relative, even though the recurrence risk ratio is
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Fig. 1. The effect of age at onset of a discase of an individual (shown on x axis) on the disease risk of
a relative (shown on y axis) as induced by different copula models. Plots are gencrated using hypo-
thetical parameter values that are realistic for modeling breast cancer risk. Left: Corresponds to a
population where the disease is rare (cumulative probabilities at age 50 and 70 are 0.013 and 0.045,
respectively). Right: Corresponds to a population where the disease is more common (cumulative
probabilities at age 50 and 70 are 0.33 and 0.56, respectively). The correlation parameters in the differ-
ent models are chosen in such a way so that all the models correspond to a fixed recurrence risk ratio.
The fixed values are 2.2 and 1.3 for left and right, respectively.

held constant. The plots are generated using hypothetical parameter values that are
realistic for breast cancer data. In each plot, for a given value of the age at onset of an
individual on the x axis, the y axis shows the cumulative risk until age 70 for a rela-
tive. It is assumed that there is no risk of disease below age 25. The joint distribution
of the years to the disease after age 25 for two relatives is assumed to follow a copula
model where the marginal distributions are the same for the two relatives. We consid-
ered a Weibull marginal distribution with two different sets of parameter values. The
shape and scale parameter for the Weibull distribution are chosen to be 1.8595 and
0.0076 for the plot in Fig. 1 (left) and 1.4081 and 0.0209 for the plot in Fig. 1 (right),
respectively. These parameter values are chosen so that Figure 1 (left) corresponds to
a population where the disease is rare (cumulative probabilities at age 50 and 70 are
0.045 and 0.127), whereas Figure 1 (right) corresponds to a population where the
disease is more common (cumulative probabilities at age 50 and 70 are 0.33 and
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0.60). In each plot the association parameter (6) corresponding to the three different
copula models are chosen so that the recurrence risk ratio, as defined above, is 2.2
and 1.3 for the plot in Fig. 1 (left and right, respectively).

Figure 1 shows the different effect of the age at onset of a woman on her relative’s
risk to the disease corresponding to the different models. When the disease is rare
(Fig. 1 left), for stable model we observe that early age at onset of a woman dramati-
cally increases the risk of her relative. In contrast, early age at onset of a woman
corresponds to only a slight and a moderate increase in risk of the relative in Clayton’s
and Frank’s models, respectively. When the disease is more common (Fig. 1, right),
young age at onset of a woman increases risk of her relative in all the models. Both
Frank’s and the stable models correspond to a steep increase, whereas Clayton’s
model corresponds to a more moderate increase.

APPLICATION OF COPULA MODEL TO WAS STUDY

We propose use of the copula functions to model the correlation between the
ages at onset of pairs of female relatives of the participants, given their respective
mutation status. Consider a participant who reported the personal history for each of
his/her 7 relatives. Let g” = 1 or 0 indicate whether any of the mutant alleles are
present or not in the participant. Similarly, let gf, j = 1,..., n denote the mutation
status of the relatives, which are unobserved in the kin-cohort design. Let T, j =
1,..., n denote the age at onset of the relatives, which may or may not be observed
due to censoring. Let C’;, J = 1,..., n denote the censoring time for the relatives,
which can be either their age at the time of the interview of the corresponding par-
ticipant or their age at death, whichever occurred first. It is assumed that censoring
time of the relatives are distributed independently of their genotypes and their ages
at onset of the disease. Now let Xf = min(T;,C;) denote the observed age for the j-th
relative and &} = 1 or 0 denote the indicator of whether 7} < Cj, that is, whether the
relative had the disease before the follow-up ended.

Let Co(u, v) denote a class of copula functions, such that for any two relatives,
say indexed by j and J/,

Pr(T, 21,7, 21, | 8],80) = ClS 5 (1)), (1] (1)
J

for some “true” value of 8= 6, where S (), g = 0, 1 denote the survivor functions
corresponding to non-carriers and carriers of the mutations, respectively. In equation
(1), 0 gives a measure of association after accounting for the effect of the genotype
status of the two relatives on their respective marginal risks. Thus, here 6 measures
residual correlation of the disease, which cannot be explained by the gene under
investigation. In the most general model, however, @ still may depend on the muta-
tion status of the members of the pairs as follows

6,, if both are non-carriers
8=16, if exactly one is a carrier

6,, if both are carriers
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Unequal values of 0 are possible, for example, if the unobserved factors, genetic or
environmental, that cause residual familial correlation have different effects on carri-
ers and non-carriers. Thus, the difference in estimates of 6y, 6y, and 8, will be sugges-
tive of interaction between the mutations under study and the residual familial effect.

Quasi-Likelihood

We construct a quasi-likelihood of the data by considering all possible pairs of
relatives corresponding to a participant and treating the pairs as if they are indepen-
dent of each other. The contribution of the (7, /) pair is given by the joint probability
of their observed disease data given the genotype of the related participant. This
probability can be obtained by first conditioning on the unknown genotypes of the
relatives and then integrating with respect to the joint distribution of their genotypes
given that of the participant as follows:

Ly =pr(x),81,27,87 187 = 3 pr(x], 67,37, 57 | ] gl hpr(ef gy 187 ()
g gy

In equation (2), the first term inside T can be determined from our model
after accounting for the possible single and double censoring (see Appendix),
whereas the second term can be determined from the assumed mode of inheritance
as a function of the allele frequency. The contribution of the relatives of a partici-
pant all together can be written as L = IIj; y).c L; 7, where C denotes all possible
pairs of relatives of the participant. The contribution of all the families together is
obtained by taking the product of the contribution of the independent families.
Though the quasi-likelihood ignores the dependency among the pairs within the
same family, it can be shown that the parameter estimates obtained by maximizing
this quasi-likelihood are consistent as long as the model for the bivariate distribu-
tion is correctly specified. A major motivation for considering one pair at a time is
that we are only interested in assessing the correlation between two relatives at a
time. Thus, higher order correlations can be treated as nuisance parameter and no
assumptions need be made about them. Alternatively, one may model the joint
distribution of all the relatives and consider a full likelihood approach. Although
such an approach will be more powerful, consistency of the parameters of interest
in this approach will depend on the correct specification of the whole multivariate
model, which requires more model assumptions than the bivariate model. We also
note that in our model the association parameter (6) depends on the genotypes of
the relatives. Although straightforward extensions of bivariate to multivariate copula
models exist in the literature when 0 does not depend on covariates, such exten-
sions can be complex when 6 depends on covariates.

Two-Stage Estimation

If So(?) and S(¥), the age-specific marginal survival probability functions corre-
sponding to non-carriers and carriers, are assumed to have known parametric forms
with a small number of unknown parameters, the quasi-likelihood defined in the last
section can be maximized jointly with respect to the parameters of the marginal distri-
butions and the association parameters of the copula model. As the number of param-
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eters needed to define Sy(¢) and S,(?) increases, however, the joint maximization prob-
lem becomes computationally challenging. In this article, we consider estimating the
marginal survivor functions non-parametrically, which essentially involves defining Sy
and S; in terms of a “large” number of parameters. We proposed a two-stage estima-
tion approach, in which at the first stage we estimate S, and S; using the marginal
likelthood approach considered by Chatterjee and Wacholder [2001] and then estimate
0 using the quasi-likelihood defined above after replacing S, and S, by their respective
estimate obtained at the first stage. In the marginal likelihood, the contribution of a
family is found by taking the product of the marginal probabilities of the disease his-
tory of the individual relatives given the corresponding participant’s genotype. Thus,
the contribution of a family corresponding to a participant with » relatives is given by
"1 pr(x58f|g"), which can be written in terms of S, and S, as

n 1
const x [ . 43 (+)S,, (xoprcef | "), 3)

J=1 gf=0

where A,(x) is the hazard function corresponding to S,(x). To obtain a non-paramet-
ric estimate of S, and §;, Chatterjee and Wacholder considered Kaplan-Meier prod-
uct limit form for them, which allows a common set of jump points for the two
curves—a jump at each age where at least one breast cancer onset has been observed
among the pooled sample of the relatives of non-carrier and carrier participants. An
EM algorithm is then defined to maximize the marginal likelihood to obtain esti-
mates of the hazards corresponding to S, and S; at each of these jump points. We
note that equation (3) does not depend on the choice of our copula model, and, thus,
the corresponding estimates are free of the choice of the association model. In fact, it
can be argued that the estimates of Sy and S; will be consistent irrespective of the
nature of the correlation between the members of a family, as long as the relatives of
the participants can be treated as a random sample from an underlying population. In
contrast, estimates of the marginal penetrance obtained from a full likelihood ap-
proach, the likelihood being formed under a particular assumption about the joint
distribution of the relatives, may have considerable bias under misspecification of
the joint model. Details of the marginal likelihood approach, together with its com-
parison with alternative approaches of penetrance estimation [Wacholder et al., 1998;
Gail et al., 1999a] can be found in Chatterjee and Wacholder [2001]. Finally, the
above two-stage estimation approach can be considered as an extension of the two-
stage estimation approach considered by Shih [1998] for ordinary copula models to
our setting where data are observed from mixtures of copula models.

The copula parameters, although they give a measure of residual association,
are perhaps too abstract to be useful for interpretation of the results. More interpret-
able quantities can be easily computed from the estimate of the marginal penetrances
and the copula parameters. For example, a popular measure of familial aggregation
often used in genetic epidemiology is the recurrence risk, the risk of a woman given
the history of the disease in one of her relatives. For measuring residual aggrega-
tion, we compute the recurrence risk for a woman given her mutation status using a
formula given in the Appendix.
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For variance estimation we consider a bootstrap approach, where the families
are treated as the bootstrap sampling units to account for the correlation within a
family. First, we sample with replacement from all the families, to obtain a random
sample of the same size as the total number of families in the study. For each such
sample, we first obtain the marginal-likelihood estimate of the marginal survivor
functions and then substitute those in the quasi-likelihood for the corresponding popu-
lation quantities. The quasi-likelihood is then maximized to obtain the estimate of
the copula parameters for the corresponding bootstrap sample. Bootstrap variance
estimates of parameters of interest can be computed as the variance of the corre-
sponding estimates over a large number of bootstrap samples. Shih [1998] consid-
ered a two-stage quasi-likelihood approach for inference in bivariate copula models.
Though her problem was somewhat simpler, the asymptotic theory she developed
for copula models with parametric marginal distributions can be used in our setting
to derive an asymptotic variance formula if we assume a parametric or discrete mar-
ginal hazard model for carriers and non-carriers. Asymptotic theory for non-para-
metric marginal hazards will require modern semi-parametric estimation theory and
is beyond the scope of this paper.

RESULTS FROM THE WASHINGTON ASHKENAZI STUDY

We applied the two-stage estimation approach to the data from the Washington
Ashkenazi Study to estimate the residual effect of family history in the carriers and
the non-carriers of BRCA1/BRCA2 mutations. Estimation of the marginal cumulative
risks at the first stage involves 305 first-degree relatives of 110 carrier volunteers
and 12,991 first-degree relatives of 4,752 non-carrier volunteers. Since only female
breast cancer is considered, only female first-degree relatives (mother, sister, or daugh-
ter) of the participants (male or female) are included in the analysis. Assuming Hardy-
Weinberg equilibrium and treating the volunteers as a random sample, Struewing et
al. [1997] estimated the allele frequency of the BRCAI/BRCA2 mutations in the
Ashkenazi population from the carrier frequency of the volunteers. We used this
estimate of allele frequency (0.016) for our analysis of the data. The marginal likeli-
hood estimate of the cumulative risk among the carriers of any of the three specific
mutations and the corresponding estimate given in Struewing et al. [1997] are shown
in Fig. 2. We observed that the new estimate followed the original estimate very
closely until about age 60. After age 60, the original reported estimate was non-
monotonic; a natural monotonicity constraint is automatically imposed in the mar-
ginal likelihood estimator described in the Two-Stage Estimation section. The new
estimates of the cumulative risk up to ages 70 and 80 were 0.60 and 0.67, as com-
pared to the original estimates of 0.56 and 0.60, respectively. The marginal-likeli-
hood risk estimate for the non-carriers was almost identical to that reported by
Struewing et al. (data not shown).

In the second stage, we considered all possible pairs of the first-degree relatives
of the non-carrier and carrier volunteers, who were also first-degree relatives of each
other. Thus, with respect to the relationship to the volunteers, three types of pairs
were considered, namely mother-sister, sister-sister, and daughter-daughter. Table I
shows the frequency distribution of these pairs by the disease status of the members
of the pairs. As described in the Application of Copula Model to WAS Study section,
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Fig. 2. The age-specific cumulative risk of breast cancer among carriers and non-carriers of any three
BRCAI/BRCA2 mutation: original estimates reported in Struewing et al. [1997] and new estimates
based on the marginal likelihood method. The dotted line is the bootstrap 95% pointwise confidence
interval for the marginal likelihood estimate.

the most general model for our data will be to allow three different copula param-
eters, 6y, 6, and 6,, which respectively measure the association between two non-
carriers, one non-carrier and one carrier, and two carriers. We note that the BRCA1/
BRCA2 mutations are very rare, so the relatives are very unlikely to be carriers un-
less the related volunteer is a carrier; thus, most of the information on 6, and 6,
comes from the pairs corresponding to the carrier volunteers. From Table I, we note
that of 160 such pairs, only eight were composed of two affected members. Due to
such sparseness of the data, we found that estimation of 6, and 6, separately is diffi-
cult in our data set. Although we could obtain these estimates by maximizing the

TABLE I. Frequency Distribution of the Pairs of First Degree Relatives of Non-Carrier and
Carrier Volunteers by Breast Cancer Status of the Members of the Pairs

Relatives affected Non-carriers Carriers
0 5,759 106
1 838 46
2 76 8

Total 6,673 160
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quasi-likelihood defined earlier, the resulting estimates were numerically unstable.
As the next best approximation, we fitted the following two-parameter model

6, if both non-carriers
6 at least one is a carrier

Table II shows the genotype-specific recurrence risk, defined as the cumulative
risk for a woman up to age 70 given her carrier status and the disease history of a
70-year old first-degree relative. Results from all three models indicate that there is a
strong and statistically significant effect of family history on non-carriers, but the
effect of family history on carriers is small or none. Specifically, in both Frank’s and
Clayton’s models, the relative risk associated with the relative’s disease status (re-
currence risk ratio) among non-carriers is 2.1 (95% CI: 1.6-2.6), whereas the corre-

TABLE II. Estimate of Genotype-Specific Recurrence Risk: Cumulative Risk of Breast Cancer
for a Woman Until Age 70, Given Her Carrier Status and the Disease History of a 70-Year-Old
Female First-Degree Relative*

Relative’s age Non-carriers Carriers
Relative’s status at diagnosis Estimate’(%) 95% CI° Estimate®(%)  95% CI°
Frank’s model: (log QL = -6,708.3)
No Hx 11 10-12 57 41-77
Hx 23 19-28 63 48-81
<30 25 20-31 67 48-89
30-39 24 20-30 66 48-87
40-49 24 20-30 64 48-84
50-59 23 19-28 62 48-79
60-69 23 19-27 62 48-78
Clayton’s model: (log QL = -6,708.8)
No Hx 11 10-12 56 40-77
Hx 23 19-28 67 48-85
<30 24 20-30 70 48-93
30-39 23 19-29 70 43-92
4949 23 19-29 68 46-88
50-59 23 19-28 65 49-81
60-69 22 19-27 65 48-80
Stable model: (log QL = -6,709.7)
No Hx 12 11-13 60 44-78
Hx 20 17-26 60 46-78
<30 42 29-57 60 46-82
30-39 29 22-38 60 46-80
40-49 23 18-29 60 46-78
50-59 19 16-23 60 46-78
60-69 17 15-20 60 46-78

*For women with a diseased relative, effect of the age at onset of the relative is also shown by comput-
ing the recurrence risk corresponding to five intervals for the age at diagnosis of the relative.
“Estimates are obtained using the copula model and related estimation methods decribed in Quasi-
Likelihood and Two-Stage Estimation sections.

*Based on 150 bootstrap samplc of the families.

No Hx, without disease; Hx, with disease.
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sponding relative risk in the stable model is 1.8 (1.4-2.4). Among carriers, the corre-
sponding relative risks for Frank’s, Clayton’s, and stable models are 1.1 (1.0-1.7),
1.2 (1.0-1.94), and 1.0 (1.0-1.3), respectively. The lower confidence bound of 1.0
for each of these relative risk estimates results from the fact that in our models we
do not allow for negative association among family members and relative risk less
than 1.0 is not possible. We also note that for the stable model the estimate of 67 was
at the boundary of the parameter space, which corresponded to no association. Table
IT also shows the effect of age at onset of the relative on the recurrence risk estimate.
For Clayton’s and Frank’s models, these estimates show very little dependence on
the relative’s age at onset. For both non-carriers and carriers, a slight increase in the
risk is observed with younger age at onset of the relative. For the stable model, on
the other hand, a relative with early age at onset seems to significantly increase the
risk of a non-carrier woman. These age-dependent estimates, however, are mostly
model driven, since, as discussed in the Copula Models section, the choice of a par-
ticular copula model specifies a particular time-dependent association structure. As
we have seen in Fig. 1, compared to the Frank’s and Clayton’s models, the stable
model specifies a very strong effect of time on the association between two relatives
and, thus, the differences in the respective time-dependent estimates that we observe
are not surprising. To see which type of association model best fits a particular set of
data, a model selection criterion is necessary. Since all the three models were fitted
using the same quasi-likelihood described in the Quasi-Likelihood section and all of
them involve the same number of parameters, we used the value of the log(quasi-
likelihood) at the estimated parameter values to compare the fit of the different mod-
els in our data. The smallest value of the log(quasi-likelihood) for Frank’s model
suggests this to be the best fit for our data. However, we notice that the differences
among the fit of the different models are not very large.

DISCUSSION

Our analysis of WAS data suggests that the presence of breast cancer in a single
first-degree relative significantly increases the risk of non-carriers but has little or no
effect on the risk of carriers. This conclusion about the global effect of family his-
tory, which considers the effect of the relative having the disease before age 70 with-
out any regard to the actual age at onset, seems to be fairly robust to the choice of
different association models. The estimates showing the effect of age at onset of the
relative, however, are sensitive to the choice of the model and have to be interpreted
cautiously. Although the best-fitting model suggests little effect of age at onset of
relatives, its fit was only marginally better than an alternative model that assumes
strong effect of age at onset on the risk of non-carriers. It seems that more data will
be necessary to make a more definitive conclusion about the effect of age at onset.

Claus et al. [1998] and Kauffman and Struewing [1998] reported estimates of
odds ratios for positive family history among non-carriers of BRCA1/BRCA2 muta-
tions. The outcome data for the first study consisted of the disease status of the cases
and controls who participated in the Cancer and Steroid Hormone case-control study,
while that of the second study consisted of the disease status of the WAS volunteers.
Both studies treated the subjects’ family history as an exposure in their analysis and
estimated the corresponding odds ratio using standard logistic regression methods.
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The overall conclusion that positive family history increases the risk of breast cancer
among non-carriers is the same in these studies as ours. The effect of positive dis-
case history of a single relative from the analysis of Kauffman and Struewing, how-
ever, was weaker, the estimated odds ratio for first-degree family history effect being
about 1.5 (95% CI: 1.1-2.2), in contrast to those from Claus et al. and the current
analysis, both of which estimated the corresponding odds ratio to be about 2.0.

Certain unique features and caveats of our analysis in comparison to the two
other studies merit discussion. Since the outcome data for our analysis are obtained
from a retrospective cohort formed by the first-degree relatives of the volunteers, we
can estimate absolute risks as well as odd ratios. Second, we attempted to estimate
the effect of family history on carriers. Third, our analysis and that of Claus et al.
[1998] account for mutation status for individuals with no directly available geno-
type information in different ways. We account for the unknown mutation status
more formally at an individual level, while Claus et al. [1998] used an ad hoc ap-
proach that predicts the carrier status at a group level. The statistical program that
they used to predict the carrier probabilities involves external estimates of the pen-
etrance functions associated with BRCA1/BRCA2 mutation status. It is unclear whether
and how to incorporate uncertainties in these estimates in their final analysis. Fur-
thermore, to predict the carrier probabilities their method also assumes that residual
correlation is absent, even though the primary goal of the study is investigation of
residual family history effect. In contrast, our estimation method is able to avoid
these issues by using internal data exclusively. Kauffman and Struewing, on the other
hand, based their analysis on the female volunteers of the WAS study and formu-
lated the problem in terms of estimating the risk of non-carrier volunteers by their
family history. As noted by the authors and discussed before in this article, use of the
volunteer’s disease may produce biased results due to unknown influence of family
history and the mutations under study on survival of the cases [see also Chappuis,
1999] and hence their ability to participate in the study. Due to the cohort nature of
the relatives’ disease incidence data, our analysis is not expected to be affected by
the survival of the diseased relatives after their cancer incidence.

A limitation of the WAS study, as discussed by Struewing et al. [1997] and
Wacholder et al. [1998], is reliance on volunteers. It is likely that volunteers with
positive family history will be more likely to participate in the study, the chance of
participation probably increasing with the number of affected relatives. Our analysis,
which throughout assumes that the relatives can be treated as a cohort of individuals
randomly selected from an underlying population, does not account for such volun-
teer bias. Our estimates of marginal and conditional risks, based on families that
possibly have more affected relatives than families in the general population, can be
expected to be slightly higher than the true risks in the general population.

The observed strong effect of family history on the risk of breast cancer of non-
carrier females can be due to a combination of other breast cancer susceptibility
genes and environmental factors that tend to aggregate within a family. The environ-
mental factors may include some known risk factors, such as age at first birth and
age at menarche, for both of which correlation has been reported among related indi-
viduals [Treloar and Martin, 1990], and unknown risk factors, with the most likely
candidates being dictary and lifestyle factors. Simulation studies [Khoury et al., 1988,
however, show that aggregation of a single environmental factor can have a signifi-
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cant effect on aggregation of a disease only if the relative risk of the disease corre-
sponding to the factor is extremely high. On the other hand, there has been some
evidence for existence of at least one major susceptibility gene in addition to BRCA1/
BRCA?2 [Serova et al., 1997]. Research to identify such genes is in progress. A num-
ber of candidate breast cancer susceptibility genes, including but not limited to p53
and ATM, are being studied, although the importance of their contribution to the risk
of breast cancer is not yet well understood. The observed small effect of family
history among the BRCA1/BRCA2 carriers in these data indicates that the combined
effect of genetic and environmental factors, which may explain the family history
effect in non-carriers, is weak on carriers. This is consistent with other studies that
have found that various known risk factors for breast and ovarian cancer in the gen-
eral population have little, none, or even opposite effects on the risk of BRCA1/
BRCA?2 carriers. Jernstorm et al. [1999], for example reported that early age at first
birth, which is known to be associated with reduced risk of breast cancer in the
general population, did not have any effect on the risk of carriers. The same study
also found that increasing parity, which is believed to be protective for breast cancer,
was associated with increasing risk of breast cancer among BRCA1/BRCA2 carriers.

In summary, we have proposed statistical methods for analyzing data from kin-
cohort designs to estimate the risk of a disease associated with certain known muta-
tions and simultaneously measure the residual familial aggregation of the disease
after accounting for these mutations. The basic modeling approach consists of speci-
fying the joint age-at-onset distribution for pairs of relatives conditional on their
genotypes using a class of models for bivariate failure time data, known as copula
models. The estimation method we proposed is simple to implement, computationally
fast even when the marginal penetrances are treated non-parametrically, and does not
require specification of third or higher order associations among three or more rela-
tives. Applying the methods to the WAS data, we obtained non-parametric estimate
of the age-specific cumulative risk of breast cancer among the carriers and the non-
carriers of BRCAI/BRCA2 mutations, which corrected the non-monotonicity prob-
lem in the corresponding original estimates reported by Struewing et al. [1997], and
also estimated the residual effect of family history, for both non-carriers and carriers.
In this paper, we concentrated on parametric models for residual correlation. An im-
portant area of future research will be to consider more non-parametric estimation of
the age-dependent correlation structure, particularly among the non-carriers for whom
the presence of a residual familial effect seems to be quite evident. A particular pat-
tern of such non-parametric estimates, such as stronger correlation at young ages or
uniform correlation over all ages, may shed light on mechanisms of action for the
residual familial risk factors.
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APPENDIX

Details for Computing Quasi-Likelihood

In equation (2), pr(t®, 5%, %, 6, |g, g/°) can have three different forms corre-

sponding to pairs with none, exactly one, or two diseased members. In most applica-
tions, including the current one, ages are recorded up to the nearest integer. In that
case, the form of pr(t,«R, SjR, tfR, 5,-'R | ij, gj»R), after ignoring constant terms that do not
depend on the parameters of the model, are as follows: for §7= 0 and &5 =0,
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Pr(T; 21,77 217 | 8], 87) = Col S (10,5, (1))
for 85=1and 6% =0,

* _ Rt R R _Ry __ R R R R
pr(T; _tj ’Tj’ th' Igj ’gj')_ CB[ngl_i (tj -—l),ng; (tj’)]_CH[Sg}!_((tj )’Sg;{ ({;’)]’
for §=1and & = 1,
pi(Ty = 1) Ty =17 | &) g))
- R R R R
= ClS 5 (1] = 18,4 (1} = D] = CylS (1), ¢ = 1)

= ColS 5 (1 = 1.8, ()14 ColS 1 (1), ()]

Computing Genotype Specific Recurrence Risk

The recurrence risk defined as the cumulative risk for a woman up to a specific
age, say t, given her mutation status (g,) and the age at onset of the relative (7)), can
be computed by the formula

> PT,<tas<T <b|g,.g)Prg |g)
le Pr(a<T, <b|g)Pr(g | &)

Pr(T, <t|a<T,<b,g)= 4)

where T, denotes the age at onset of the woman, (a, 5] denotes an age interval con-
taining the relative’s age at onset, and g, denotes the unknown genotype of the rela-
tive. If the relative was alive without the disease until a specific age, say s, one can
chose @ = s and b = oo in the above formula. In equation (4), Pr(a £ T} < b|g,) can be
estimated from the estimates of the marginal risks, Sy(¢) and S,(¢), and Pr(7; < t,a <
T, < b|g), go) can be estimated from the estimates of Sy(2),5,(#) and 6 using the model
formula given in (1).



