Skip to Content
Discovering the causes of cancer and the means of prevention

Publications Search - Abstract View

Title: Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma.
Authors: Law MH,  Bishop DT,  Lee JE,  Brossard M,  Martin NG,  Moses EK,  Song F,  Barrett JH,  Kumar R,  Easton DF,  Pharoah PD,  Swerdlow AJ,  Kypreou KP,  Taylor JC,  Harland M,  Randerson-Moor J,  Akslen LA,  Andresen PA,  Avril MF,  Azizi E,  Scarrà GB,  Brown KM,  Dȩbniak T,  Duffy DL,  Elder DE,  Fang S,  Friedman E,  Galan P,  Ghiorzo P,  Gillanders EM,  Goldstein AM,  Gruis NA,  Hansson J,  Helsing P,  Hočevar M,  Höiom V,  Ingvar C,  Kanetsky PA,  Chen WV,  GenoMEL Consortium,  Essen-Heidelberg Investigators,  SDH Study Group,  Q-MEGA and QTWIN Investigators,  AMFS Investigators,  ATHENS Melanoma Study Group,  Landi MT,  Lang J,  Lathrop GM,  Lubiński J,  Mackie RM,  Mann GJ,  Molven A,  Montgomery GW,  Novaković S,  Olsson H,  Puig S,  Puig-Butille JA,  Qureshi AA,  Radford-Smith GL,  van der Stoep N,  van Doorn R,  Whiteman DC,  Craig JE,  Schadendorf D,  Simms LA,  Burdon KP,  Nyholt DR,  Pooley KA,  Orr N,  Stratigos AJ,  Cust AE,  Ward SV,  Hayward NK,  Han J,  Schulze HJ,  Dunning AM,  Bishop JA,  Demenais F,  Amos CI,  MacGregor S,  Iles MM
Journal: Nat Genet
Date: 2015 Sep
Branches: GEB, LTG
PubMed ID: 26237428
PMC ID: PMC4557485
Abstract: Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10(-8)), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology.